Advertisement

রবিবার, ২৮ ফেব্রুয়ারী, ২০১৬

আমরা কোন বস্তুকে উপরে ছুঁড়ে মারলে এটি একটু পর ভূমিতে ফিরে আসে। আরো জোরে ছুঁড়লে আরেকটু পরে ফিরে আসবে। আরো জোরে মারলে? আরেকটু পরে। এভাবেইকি চলতে থাকবে? না, সব কিছুর একটি শেষ আছে। এমন একটি বেগ আছে যে বেগে কোন কিছুকে খাড়া উপরের দিকে নিক্ষেপ করলে এটি আর পৃথিবীতে ফিরে আসবে না। পৃথিবীর অভিকর্ষকে বৃদ্ধাঙ্গুলি দেখিয়ে মহাশূন্যে হারিয়ে যাবে। পৃথিবীর ক্ষেত্রে এই বেগটির নাম মুক্তি বেগ।

তাহলে কোন বড় ভরের বস্তু (যেমন গ্রহ, নক্ষত্র ইত্যাদি) থেকে যে বেগে কোন বস্তুকে নিক্ষেপ করলে সেটি নিচে ফিরে আসে না তাকে মুক্তি বেগ (Escape Velocity) বলে। পৃথিবীর ক্ষেত্রে মুক্তি বেগের মান হচ্ছে সেকেন্ডে ১১.২ কিলোমিটার। এর চেয়ে কম বেগ দিয়ে কোন রকেট বা নভোযানকে মহাশূন্যে পাঠানো সম্ভব হবে না।

বিভিন্ন বস্তুর মুক্তি বেগঃ 
[এখানে বেগের একক কিলোমিটার পার সেকেন্ড (km/s) ধরা হয়েছে।]
সূর্যঃ ৬১৭.৫
বুধঃ ৪.৩
শুক্রঃ ১০.৩
পৃথিবীঃ ১১.২
চাঁদঃ ২.৪
মঙ্গলঃ
বৃহস্পতিঃ ৫৯.৬
গ্যানিমিডঃ ২.৭ (বৃহস্পতির বৃহত্তম এই উপগ্রহটি সৌরজগতেরও উপগ্রহদের বড় ভাই)
শনিঃ ৩৫.৬
ইউরেনাসঃ ২১.৩
নেপচুনঃ ২৩.৮
প্লুটোঃ ১.৮
ঘটনা দিগন্তঃ আলোর বেগ

মুক্তি বেগের সূত্রঃ
এখানে ve = মুক্তিবেগ, G = মহাকর্ষীয় ধ্রুবক, M = ভর, r = ব্যাসার্ধ 
সূত্র থেকে বোঝা যাচ্ছে মুক্তি বেগের মান বস্তুর ভরের বর্গমূলের সমানুপাতিক এবং ব্যাসার্ধের বর্গমূলের ব্যস্তানুপাতিক। ফলে, বস্তুর ভর যত বেশি হবে মুক্তি বেগ তার বর্গমূলের হারে বাড়তে থাকবে এবং ব্যাসার্ধ যত বেশি হবে মুক্তি বেগ তত কম হয়ে যাবে। এবার উপরে দেখুন, প্লুটোর মুক্তি বেগ চাঁদের চেয়েও কম। প্লুটো গ্রহের খাতা থেকে বাদ পড়ার এটাও একটা কারণ।
মুক্তি বেগের সূত্রকে এভাবেও লেখা যায়-
ve = √(2gr) যেখানে = অভিকর্ষীয় ত্বরণ।
ব্ল্যাক হোলের ধারণা প্রথমে মুক্তি বেগ থেকেই এসেছে। কোন বস্তুর মুক্তি বেগ যদি আলোর বেগের চেয়েও বেশি হয়, তাহলে সেটি থেকে আলোও আসতে পারবে না। তাহলে সেটি আমরা দেখতেও পারবো না। এ জন্যেই তার নাম দেওয়া হয়েছে ব্ল্যাক হোল বা কৃষ্ণ গহ্বর।
ব্ল্যাক হোল আলোকে কিভাবে আটকে রাখে যখন আলোর ভরই নেই? জানুন এখানে

সূত্রঃ
[১] Wikipedia: Escape Velocity
Category: articles

শুক্রবার, ২৬ ফেব্রুয়ারী, ২০১৬

মেসিয়ার ৮২ 
মেসিয়ার ৮২ গ্যালাক্সিটির অপর নাম এনজিসি ৩০৩৪। একে সংক্ষেপে এম ৮২ (M82)  বা অনেক সময় সিগার গ্যালাক্সিও বলা হয়। এটি ১ কোটি ২০ লাখ আলোকবর্ষ দূরে অবস্থিত। আকাশের সপ্তর্ষীমণ্ডলী অঞ্চলে এর অবস্থান। এটি খুবই উর্বর (Starburst) গ্যালাক্সি। অর্থ্যাৎ, এতে নতুন নক্ষত্র জন্মের হার খুব বেশি। আমাদের সমগ্র মিল্কিওয়ের চেয়েও এই উর্বর গ্যালাক্সিটির দীপ্তি (Luminosity) ৪ গুণ
বেশি এবং মিল্কিওয়ে কেন্দ্রের চেয়ে বেশি ১০০ গুণ। উর্বর গ্যালাক্সিদের মধ্যে এটি আমাদের নিকটতম।

ফরাসী জ্যোতির্বিদ চার্লে মেসিয়ে ছিলেন ধূমকেতু শিকারী। অনেকগুলো বস্তুকে তিনি এক সময় ধূমকেতু মনে করলেও পরে জানা যায় এরা ধূমকেতু নয়। তিনি হতাশ হলেন। পরে এদের পেছনে সময় নষ্ট করা থেকে বাঁচতে এদের একটি তালিকা করলেন। বর্তমানে এই তালিকায় ১১০ টি বস্তু আছে। তাঁর নামানুসারেই বস্তুগুলোকে বলা হয় মেসিয়ার অবজেক্ট।
ছবিটি হাবল টেলিস্কোপের তোলা।

আর্কাইভঃ  আজকের ছবি
সূত্রঃ 
[১] উইকিপিডিয়াঃ Messier 82
Category: articles

সোমবার, ২২ ফেব্রুয়ারী, ২০১৬

ব্ল্যাক হোল কী জিনিস? ব্ল্যাক হোলের জন্ম হয় কিভাবে? ব্ল্যাক হোলের সাথে অভিকর্ষের কী সম্পর্ক? আইনস্টাইনের আপেক্ষিক তত্ত্বের সাথে ব্ল্যাকহোলের কোন সম্পর্ক আছে কি? ব্ল্যাক হোলকি টাইম ট্র্যাভেল ঘটাতে পারে? ওয়ার্মহোলের সাথে ব্ল্যাক হোলের সম্পর্ক কোন দিক দিয়ে? আলোর মতো এমন গতিমান জিনিস কিভাবে ব্ল্যাক হোলের গর্তে আটকা পড়ে?

ব্ল্যাকহোল নিয়ে এমন আরো নানান কিছু জানতে নিয়মিত আয়োজন ব্ল্যাক হোলের গভীরে।

ব্ল্যাক হোল

শুরু করি মহাকাশের মহাদানব এই ব্ল্যাকহোল তথা কৃষ্ণগহ্বরদের পরিচতি দিয়ে।

আপনার নিশ্চয়ই ক্রিকেট খেলার বা দেখার অভ্যাস আছে, তাই না? নিশ্চয়ই আছে ছক্কা মারারও অভ্যাস। অনেক সময় দেখা যায় ব্যাটসম্যানের বেধড়ক পিটুনি খেয়ে বেচারা বল অনেক উপরে উঠে যায়। কিন্তু অভিকর্ষ সম্পর্কে একটি জনপ্রিয় কথা প্রচলিত আছে- What goes up must come down। অর্থ্যাৎ, উপরে যে উঠবে, নিচেও তাকে নামতেই হবে। এই কথার প্রতিধ্বনি বাজাতেই যেন একটু পরেই বলটি আছড়ে পড়ে গ্যালারিতে, অথবা ভাগ্য খারাপ হলে ফিল্ডারের হাতে!

কেন উপরে ছুড়ে মারা বস্তু নিচে নেমে আসে? সহজ উত্তর- পৃথিবীর অভিকর্ষ। আচ্ছা, বলটিকে যদি আরেকটু জোরে মারা হতো, তাহলে কী হত? তখনও এটি নিচে নামত। তবে, একটু দেরিতে। আরেকটু জোরে মারলে? আরেকটু পরে। আরেকটু জোরে মারলে? আরেকটু পরে। এভাবেই কি চলতে থাকবে? না। সবকিছুরতো একটা সীমা আছে! (সব সময় অবশ্য না, গণিতবিদেরা আপত্তি করে বসবে!)

ধরুন, কোন ব্যাটসম্যানের গায়ে মিস্টার ইউনিভার্সের শক্তি ভর করেছে। সে বলটাকে এমন জোরে উপরে পাঠিয়ে দিল যে বলটি পৃথিবীর অভিকর্ষকে বৃদ্ধাঙ্গুলি দেখিয়ে মহাশুন্যে হারিয়ে গেল। এটাকি সম্ভব যে কোন বস্তুকে নির্দিষ্ট কোন বেগে মারলে এটি আর ভূমিতে ফিরে আসবে না? হ্যাঁ সম্ভব। এটা করার জন্যে পৃথিবী থেকে খাড়া উপরে ছোড়া বস্তুর ক্ষেত্রে প্রাথমিক বেগ হতে হবে প্রতি সেকেন্ডে ১১ দশমিক ২ কিলোমিটার। এই বেগকে তাই বলা হয় মুক্তি বেগ (Escape Velocity)।

প্রকৃতপক্ষে মহাশুন্যে রকেট ও স্পেসশিপ পাঠানোর সময় এই মুক্তি বেগের কথা মাথায় রাখতে হয়। রকেটের প্রাথমিক বেগ দিতে হয় মুক্তি বেগের চেয়ে বেশি। নইলে কিন্তু “হোয়াট গোজ আপ, মাস্ট কাম ডাউন” কথাটি সত্য হয়ে যাবে।
 
এবার ধরুণ, কোনো গ্রহের ভর পৃথিবীর চেয়েও বেশি। তার ক্ষেত্রে এই মুক্তি বেগ হবে আরো বেশি [কেন?]। যেমন সৌরজগতের বৃহত্তম গ্রহ বৃহস্পতির কথাই ধরুণ। এর পৃষ্ঠে মুক্তিবেগ হচ্ছে প্রতি সেকেন্ডে ৫৯.৬ কি.মি.। অন্য দিকে সূর্যের মুক্তিবেগ সেকেন্ডে ৬১৭.৫ কিলোমিটার। অর্থ্যাৎ সৌরপৃষ্ঠ থেকে নিক্ষিপ্ত কোন বস্তুকে সূর্যের আকর্ষণ কাটিয়ে বাইরে চলে যেতে হলে প্রাথমিক বেগ এই পরিমাণ হতে হবে। অবশ্য সমগ্র সৌরজগতের মুক্তি বেগ আরো খানিকটা বেশি।

আমরা এও জানি, সূর্য একটি সাধারণ ভরের তারকা। এর চেয়েও বিশাল ও বাঘা বাঘা তারকাদের উপস্থিতি রয়েছে খোদ আমাদের মিল্কিওয়ে গ্যালাক্সিতেই।

কোন বস্তুর মুক্তিবেগ নির্ভর করে দুটো জিনিসের উপর- সংশ্লিষ্ট বস্তুর ভর ও ব্যাসার্ধ। ভর বেশি হলে পৃষ্ঠে মুক্তি বেগ বেশি হবে, কিন্তু ব্যাসার্ধ বাড়লে কমে যাবে। প্রসঙ্গক্রমে বলে রাখি, ভর বাড়লেই যে ব্যাসার্ধও বাড়বে- এমনটি কিন্তু বলা যাবে না। কারণ, একেতো ঘনত্ব বেশি হলে কিন্তু ব্যাসার্ধ কমে যাবে। উপরন্তু ভর বেশি হবার অর্থ দাঁড়াবে অভিকর্ষ শক্তিশালী হয়ে যাওয়া। ফলে বস্তুটি নিজেরই অভিকর্ষের চাপে গুটিয়ে গিয়ে ছোট্টতর হয়ে যাবে। পর্যায় সারণির একই পর্যায়ে ডানে গেলে যেমন ঘটে অনেকটাই তেমন, তাই না?

এখন ধরুণ এমন একটি নক্ষত্র আছে যার ভর সূর্যের চেয়ে এত বেশি যে হিসেব করে এর পৃষ্ঠে মুক্তিবেগ যা পাওয়া গেল তা আলোর বেগের চেয়েও বেশি। তার অর্থ দাঁড়াবে ঐ নক্ষত্রের পৃষ্ঠ থেকে নিক্ষিপ্ত আলোও বেরিয়ে আসতে পারবে না। অবশ্য নক্ষত্রের জীবনের শুরুর দিকে এই অবস্থা ঘটে না, ঘটে যখন হাইড্রোজেন জ্বালানী ফুরিয়ে যায়। কেন? সেটা নিয়ে আমরা ভবিষ্যতে বিস্তারিত জানবো, ইনশা-আল্লাহ।

এখন, আমরা কোন বস্তু দেখি তখনই যখন বস্তুটি থেকে নির্গত আলো আমাদের চোখে এসে পড়ে। কিন্তু কোন বস্তু থেকে যদি আলো আসতে না পারে তাহলে তাকে আমরা দেখবো না। ফলে, যে নক্ষত্রের মুক্তি বেগ আলোর চেয়ে বেশি সেটি আমরা দেখতে পাবো না। তখন এর নাম হবে ব্ল্যাক হোল। ঠিক এ কারণেই ব্ল্যাক হোল আমরা দেখি না। আর এ এজন্যেই এর নাম ব্ল্যাক হোল (Black hole) বা ‘অন্ধকার গর্ত’ যাকে বাংলায় ডাকা হয় কৃষ্ণবিবর বা কৃষ্ণগহ্বর বলে।

তাহলে, ভর অল্প হওয়াতে গ্রহরা কিন্তু কখোনই ব্ল্যাকহোল হবার সুযোগ পাবে না। সব তারকারাও পাবে না। সুযোগ শুধু তারাই পাবে যাদের ভর সূর্যের অন্তত ১৫-২০ গুণ। অর্থ্যাৎ আমাদের সূর্যও কখনো ব্ল্যাক হোল হতে পারবে না।

জ্যোতির্বিজ্ঞানীদের জোরালো অনুমান হচ্ছে প্রত্যেকটি গ্যালাক্সির কেন্দ্রে রয়েছে অনেক বিশাল বিশাল ভরের ব্ল্যাকহোল যাদের ভর হতে পারে সূর্যের কয়েকশো বিলিয়ন গুণ পর্যন্ত! যেমন আমাদের মিল্কিওয়ে গ্যালাক্সির কেন্দ্রেই স্যাজিটেরিয়াস এ স্টার (Sagittarius A*) নামক অবস্থানে একটি ব্ল্যাকহোল আছে বলে জ্যোতির্বিজ্ঞানীদের দৃঢ় বিশ্বাস।
 
আমরা একটু আগে দেখলাম, ব্ল্যাকহোল থেকে কোন কিছু বেরিয়ে আসতে পারে না। কিন্তু ব্ল্যাকহোলের রাজত্বতো নিশ্চয়ই পুরো মহাকাশজুড়ে বিস্তৃত নয়। এর কেন্দ্র থেকে একটি নির্দিষ্ট অঞ্ছলের বাইরের কোন বস্তুকে এটি গ্রাস করতে পারবে না। সেই সীমানার নাম ইভেন্ট হরাইজন (Event Horizon) বা ঘটনা দিগন্ত। এটাই মূলত সেই পয়েন্ট যেখান পর্যন্ত বস্তুটির অভিকর্ষ এত বেশি শক্তিশালী যে এর মুক্তি বেগ আলোর বেগের চেয়েও বেশি। আর কোনো কিছুরই বেগ যেহেতু আলোর বেগকে অতিক্রম করতে পারে না, তাই ব্ল্যাকহোলের ঘটনা দিগন্তের অভ্যন্তরস্থ কোনো ঘটনা আমরা দেখতে পাবো না। এই সীমার বাইরের ঘটনা কিন্তু দেখবো।

কিন্তু মুক্তিবেগতো নির্ভর করে বস্তুর অভিকর্ষের উপর। আবার অভিকর্ষ কাজ করে ভরযুক্ত বস্তুর উপর। আলোরতো ভর নেই। তাহলে আলো কিভাবে ব্ল্যাক হোলের কবলে আটকা পড়ে? এটা জানতে হলে অভিকর্ষ ও আপেক্ষিকত তত্ত্বের একটু ইতিহাস জেনে আসতে হবে।

১৭৮৩ সালে বিজ্ঞানী জন মিচেল ‘ডার্ক স্টার’ (dark stars) শিরোনামে একটি গবেষণা নিবন্ধ প্রকাশ করেন। তিনি ভাবলেন যে কোন বস্তুর ভর এত বেশি ঘনীভূতওতো হতে পারে যে আলোও এর ফাঁদে আটকা পড়ে যাবে। তাঁর সেই ডার্ক স্টারকেই এখন আমরা ব্ল্যাকহোল বলে ডাকি।
 
একই রকম ভাবনা আসে ফ্রেঞ্চ বিজ্ঞানী মারকুইস ডে লাপ্লাসের মাথায়ও। তবে মজার বিষয় হলো, তিনি তাঁর বই The System of the World এর ১ম এবং ২য় সংস্করণেই শুধু ভাবনাটি ছাপেন এবং তুলে দেন পরবর্তী সংস্করণগুলো থেকে। কারণ, তখনকার সমাজে এই ধরণের ভাবনাকে মানুষ পাগলের প্রলাপ মনে করত। আর বিজ্ঞানী হকিং এর ভাষায়, তিনি নিশ্চয় চাননি পাগলের খ্যাতি পেতে।

আইনস্টাইনের আপেক্ষিক তত্ত্ব প্রকাশের পর কার্ল সোয়ার্জসাইল্ড এই ধরনের বস্তুর জন্যে একটি গাণিতিক সমাধান বের করেন। এর বেশ কিছু দিন পরে, ১৯৩০ এর দশকের দিকে ওপেনহাইমার, ভলকফ ও সিনডার মহাবিশ্বে এই ধরণের বস্তু থাকার সম্ভাবনা নিয়ে গভীরভাবে ভাবতে থাকেন।

এই  তিন গবেষক প্রমাণ করে দেখালেন, একটি যথেষ্ট ভরযুক্ত নক্ষত্র যখন সব জ্বালানী হারিয়ে ফেলে তখন এতে নিউক্লিয় বিক্রিয়ার বহির্মুখি চাপ থাকে না বলে এটি এর নিজস্ব অভিকর্ষের চাপে চুপসে যেতে থাকে।
এভাবেই আস্তে আস্তে বিকশিত হতে থাকে ব্ল্যাকহোলের ধারণা।
 
তবে, মিচেল এবং ল্যাপ্লাস- দু’জনেই আলোকে কণা বলে ধারণা করতেন যা অভিকর্ষ দ্বারা আকৃষ্ট হতে পারে। কিন্তু ১৮৮৭ সালে দুই আমেরিকান বিজ্ঞানী মিচেলসন এবং মোরলের বিখ্যাত একটি পরীক্ষা থেকে জানা গেল, আলো সব সময় একটি নির্দিষ্ট বেগে চলে, এর উৎস কোথায় সেটা মোটেই বিবেচ্য নয়। তাহলে প্রশ্ন দাঁড়ায় অভিকর্ষ কিভাবে আলোকে প্রভাবিত করে? অভিকর্ষ বল বস্তুর ভরের সাথে সম্পৃক্ত। চার প্রকার মৌলিক বলের মধ্যে একটু ভিন্ন ‘বল’ অভিকর্ষ আকর্ষণ করে শুধু ভরযুক্ত বস্তুকে।

কিন্তু আলোরতো কোনো ভরই নেই। তাহলে তার কী দোষ? বেচারা ব্ল্যাক হোলে পড়ে যাবে কেন?  
এই প্রশ্নের সমাধান নিয়ে এসেছিলেন আইনস্টাইন সার্বিক আপেক্ষিক তত্ত্বের (General theory of relativity) মাধ্যমে। এটা জেনেই আজকে বিদায় নিচ্ছি।
 
১৬৬৫ সালে সালে বিজ্ঞানী আইজ্যাক নিউটন দিয়েছিলেন মহাকর্ষ-অভিকর্ষের ধারণা। বলা হয়েছিল, মহাবিশ্বের প্রতিটি বস্তু একে অপরকে নিজ দিকে আকর্ষণ করে। বস্তুর ভর যত বেশি হবে, তার অভিকর্ষ ততোই শক্তিশালী হবে। নিউটনের এই সূত্র দিয়ে সূর্যের চারদিকে গ্রহদের গতিপথ ব্যাখ্যা করা সম্ভব হলেও কয়েকটি বিষয়ের নিখুঁত ব্যখ্যা পাওয়া সম্ভব হয়নি। এর অন্যতম উদাহরণ ছিল সূর্যের নিকটতম গ্রহ বুধের কক্ষপথের স্থানচ্যুতি।

এরকম আরো কিছু বিষয়ের নিখুঁত ব্যাখ্যা দিতে ব্যার্থ হয় নিউটোনিয়ান মহাকর্ষ।

এবার মহাকর্ষের হাল ধরেন বিজ্ঞানী আইনস্টাইন। ১৯০৫ সালে তিনি প্রদান করেন আপেক্ষিকতার বিশেষ তত্ত্ব (Special Theory of Relativity)। এর ১০ বছর পর ১৯১৫ সালে প্রকাশ করেন সার্বিক আপেক্ষিক তত্ত্ব।
১ম তত্ত্ব মতে, আলোর বেগের কাছাকাছি বেগে চলমান বস্তুর কাল দীর্ঘায়ন ও দৈর্ঘ্য সঙ্কোচন ঘটে। বেড়ে যায় ভরও।  আর ২য় তত্ত্বে তিনি মহাকর্ষকে তুলে ধরলেন ভিন্ন আঙ্গিকে। মহাকর্ষ কোন ‘বল’ নয়। এটি হচ্ছে স্থান-কালের (Space-Time) বক্রতা। স্থান এবং কাল আলাদা আলাদা কিছু নয়। স্থানের তিনটি স্থানাঙ্কের সাথে চতুর্থ স্থানাঙ্ক  ‘সময়’ মিলিত হয়ে কোনো একটি ঘটনাকে পূর্ণাংগভাবে ব্যাখ্যা করে।

আপেক্ষিকতার এই নীতি অনুযায়ী প্রত্যেকটি ভরযুক্ত বস্তুই তার চারপাশের স্থান-কালকে বাঁকিয়ে দেয়।

মহাকর্ষ (যেমন পৃথিবীর অভিকর্ষ) এভাবে স্থান-কালকে বাঁকিয়ে দেয়

নিউটোনিয়ান মহাকর্ষের মতই অবশ্য ক্ষুদ্র ভরবিশিষ্ট বস্তুর ক্ষেত্রে এই বক্রতা হবে সামান্যই। অবশ্য এই নীতি আবার আমরা যখন পরমাণুর গহীণে অতি-পারমাণবিক কণিকার জগতে নিয়ে যাবো, তখন এটি একেবারেই খাটবে না। সেখানে আবার রাজত্ব করে বেড়ায় কোয়ান্টাম তত্ত্ব। মহাবিশ্বের ম্যাক্রো (বৃহৎ) ও মাইক্রো (ক্ষুদ্র)- এই দুই জগতের শাসনভার যথাক্রমে তাই এই দুইটি আলাদা তত্ত্বের হাতে।

যাই হোক, বিশাল ভরের বস্তু কতৃক স্থান-কাল লক্ষ্যণীয়ভাবে বেঁকে যায় বলেই নক্ষত্রদের চারদিকে গ্রহদের আর গ্রহদের চারপাশে উপগ্রহের কক্ষপথ তৈরি হয়।

কিন্তু কোনো বস্তু স্থান এবং কালকে বাঁকিয়ে দেয়- এটা বললেই কি মানতে হবে? এর সপক্ষে প্রমাণওতো থাকতে হবে। বলাই বাহুল্য, প্রাচীন কালে প্রদত্ত বিভিন্ন বৈজ্ঞানিক (বা অবৈজ্ঞানিক) তত্ত্বের তুলনায় আপেক্ষিকতাকে অনেক বেশিই পরীক্ষা দিতে হয়েছিল।

সাধারণ আপেক্ষিকতার ভাষ্য মতে, ভর যেহেতু স্থান কালকে বাঁকিয়ে দেয়, সেহেতু বড় বড় ভরের বস্তুদের লেন্সের মতো আচরণ করা উচিৎ।

অর্থ্যাৎ ধরুণ, আমরা কোনো নক্ষত্রের পেছনে অবস্থিত অন্য কোন বস্তু দেখতে চাই। কিন্তু সাধারণ অবস্থায় সেই বস্তুকে দেখা না গেলেও মাঝখানের বস্তুটি যেহেতু স্থানকে বাঁকিয়ে দেবে, তাই অপরপাশের বস্তু থেকে আসা আলো সেই বক্রপথ অনুসরণ করে দর্শকের চোখে ধরা পড়বে। প্রমাণিত হবার পর এখন এই ঘটনাকে বলা হয় গ্র্যাভিটেশনাল লেন্সিং।
 
গ্র্যাভিটেশনাল লেন্সিং এর বদৌলতে আড়ালে লুকিয়ে থাকা বস্তু পর্যবেক্ষণ করা যায়

১৯১৯ সালের সূর্যগ্রহণের সময় সার্বিক আপেক্ষিকতা প্রমাণিত হয়ে গেল। সূর্যের আলোর কারণে সাধারণ অবস্থায় দৃশ্যমান না হলেও সূর্যগ্রহণের সময়ের অন্ধকারে সূর্যের পেছনে অবস্থিত দেখা গেল হায়াডিজ তারাস্তবককে (Hyades Star Cluster)। প্রমাণিত হল আপেক্ষিকতার বিশেষ তত্ত্ব। এই পরীক্ষণটি পরিচালনা করেছিলেন স্যার আর্থার এডিংটন।

 
উল্লেখ্য, সূর্যগ্রহণের সময়ের এই ঘটনা ও বুধের কক্ষপথের নিখুঁৎ বর্ণনাসহ আরো কিছু বিষয়ে সাধারণ আপেক্ষিকতার পূর্বানুমানের সাথে বাস্তব ঘটনা মিলে গেল অবিকলভাবে যেখানে তা নিউটোনিয়ান তত্ত্বের সাথে পুরোপুরি সঙ্গতিপূর্ন ছিল না।
 
অতএব, বলা যাচ্ছে, অভিকর্ষ তার চারপাশের স্থানকে বাঁকিয়ে দিয়ে ঐ স্থানগামী যেকোনো কিছুকে সেই বক্রপথ অনুসরণ করতে বাধ্য করবে। বস্তুর ভর যত বেশি হবে বক্রতার পরিমাণও হবে ততো বেশি।

এবার চিন্তা করা যাক ব্ল্যাকহোলদের মতো দানবদের কথা। এদের ভর এতই বেশি যে এরা এদের আশপাশের স্থানকালকে নির্দয়ভাবে এমনভাবে বাঁকাবে যে বক্রতা হবে শুধুই অন্তর্মুখী। অর্থ্যাৎ, এই বক্রতায় প্রবেশের দরজা থাকবে কিন্তু বেরুবার দরজা থাকবে না। গ্রামে বর্ষা মৌসুমে পুকুরে মাছ ঢোকানোর জন্যে দুটি বেড়া এমনভাবে মুখোমুখি লাগানো থাকে যে পুকুরে প্রবেশের সময় মাছ ঐ বেড়ার ফাঁক গলে চলে যেতে পারবে কিন্তু পুকুর থেকে বেরোতে পারবে না। ব্ল্যাকহোলের কাজও অনেকটাই এরকম।

ব্ল্যাক হোলে স্থান কালের বিকৃতি
এ কারণেই আলোর কোনো ভর না থাকলেও এটি ব্ল্যাকহোলের ফাঁদে পড়ে যায়। দূর থেকে আসা আলো ব্ল্যাকহোলের ঘটনা দিগন্তের ভেতরে চলে গেলে আর বের হবার রাস্তা পাবে না। ফলে ঘটনা দিগন্তের ভেতরের কোন কিছু আমরা দেখতে পাবো না।

এ তো গেল ব্ল্যাকহোলের ভেতরের অবস্থা। ঘটনা দিগন্তের একটু বাইরে এমন একটি অঞল থাকা সম্ভব যেখানে বক্রতা ভেতরের দিকে অসীম না হয়ে একটি বৃত্তপথ তৈরি করবে। এই বৃত্তের বাইরের অঞ্চলগামী আলো অল্পের জন্যে রক্ষা পেয়ে বেরিয়ে যাবে। কিন্তু এই বৃত্তাঞ্চলের আলোর কী হবে? এই আলোককণিকাটি ব্ল্যাকহোলের চারদিকে ঘুরে মরবে। অবিরত ব্ল্যাকহোলকে প্রদক্ষিণ করবে।

 
এই আলোকে কি তবে আমরা ব্ল্যাকহোলের উপগ্রহ বলতে পারি? নাহ! উপগ্রহ তো থাকে গ্রহদের। কী বলা যায় ভাবতে থাকুন। ততক্ষণে আমি আজকের মত বিদায়!!!
অন্যান্য পর্ব



Category: articles

শুক্রবার, ১৯ ফেব্রুয়ারী, ২০১৬

১৯ ফেব্রুয়ারি, ১৪৭৩। আজকের এই তারিখটি হচ্ছে নিকোলাস কোপার্নিকাসের জন্মদিন। তিনি একইসাথে গণিতজ্ঞ হলেও নজর কেড়েছেন কসমোলজিতে বিশেষ অবদান রেখে।
এমন এক সময়ে তাঁর জন্ম যখন মানুষ ভাবত মহাবিশ্বের কেন্দ্রে পৃথিবীর অবস্থান। সূর্যসহ অন্যান্য গ্রহ এবং নক্ষত্ররা ঘুরছে এর চারদিকে।
পৃথিবী-কেন্দ্রিক মহাবিশ্বের চিত্র

এই মহা ভুল ধারণা দূর করতে বিশেষ ভূমিকা পালন করল তাঁর বই De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres) বা খ-গোলকের ঘূর্ণন যাতে প্রস্তাবনা আসল সৌরকেন্দ্রিক মহাবিশ্বের। ১৫৪৩ সালে  প্রকাশিত বইখানা আধুনিক জ্যোতির্বিদ্যার অন্যতম ভিত্তি।
কয়েক বছর আগে Copernicus’ birthday লিখে গুগলে সার্চ দিলে সৌরকেন্দ্রিক মহাবিশ্বের একটি ডুডল দেখা যেত। ছুটির দিন বা কারো জন্ম দিন ইত্যাদি নানা ক্ষেত্রে গুগল ডুডল বানিয়ে থাকে।
নিকোলাস কোপার্নিকাস

তবে সৌরকেন্দ্রিক মডেল প্রথম প্রস্তাবক অবস্য কোপার্নিকাস নন। গ্রিক দার্শনিকদের অনেকেই ভাবতেন এই রকম চিন্তা। ইসলামিক জ্যোতির্বিদ্যার অগ্রগতির সাথে সাথেও ধীরে ধীরে পৃথিবীর বেগ নিয়ে ধারণার বিকাশ ঘটে এবং পৃথিবীকে মহাবিশ্বের কেন্দ্র থেকে সরানো হয়। তবে গ্রিকদের ক্ষেত্রে অন্য অনেক কিছুর মতই বাগড়া দিয়ে বসেছিলেন এরিস্টটল। তিনি বললেন, ৫৫টি এককেন্দ্রিক এবং স্বচ্ছ গোলক নিয়ে আকাশ গঠিত যেখানে আকাশের বস্তুদের বসিয়ে দেওয়া হয়েছে এবং ঐ গোলকের কেন্দ্রে আছে পৃথিবী। পৃথিবী এতে স্থির এবং আবদ্ধ। পৃথিবীকে এই বন্দী দশা থেকে মুক্ত করলেন কোপার্নিকাস।
এখন আমরা জানি সূর্যও কিন্তু মহাবিশ্বের কেন্দ্র নয়। তাহলে কে আছে কেন্দ্রে? নিশ্চয়ই প্রশ্ন জাগছে। পড়ুনঃ মহাবিশ্বের কেন্দ্র কোথায়?
সূত্রঃ
[১] Earth Sky
[২] উইকিপিডিয়াঃ জিওসেন্ট্রিক মডেল
Category: articles
সর্বশেষ লিপ ইয়ার বা অধিবর্ষ (Leap year) ছিল ২০১২ সাল। পরেরটা? হ্যাঁ, এ বছরই- মানে ২০১৬! সূর্যের চারদিকে পৃথিবীর ঘূর্ণনের সত্যিকার সময়ের সাথে আমাদের ক্যালেন্ডারের হিসাবের মিল বজায় রাখার জন্যেই লিপ ইয়ারের আবির্ভাব। কিন্তু লিপ ইয়ারের সময় ফেব্রুয়ারি মাসকে এক দিন বাড়িয়ে ২৯ দি বানানো হয় কেন?

পৃথিবী সূর্যের চারদিকে একবার ঘুরে আসাকে গ্রেগরিয়ান ক্যালেন্ডার অনুসারে এক বছর ধরা হয়। এই হিসাবে আমরা ৩৬৫ দিনকে এক বছর ধরি। কিন্তু সত্যিকার অর্থে পৃথিবী সূর্যকে ঘুরে আসতে সময় নেয় প্রায় ৩৬৫.২৫ দিন। এই বাড়তি .২৫ দিন চার বছরে ৪×.২৫ = ১ দিন হয়ে দাঁড়ায়। তাই চার বছর পরপর বছর হয় এক দিন লম্বা- ৩৬৫ দিন। এ কারণেই সম্ভবত একে লিপ ইয়ার বা লাফ দেওয়া বর্ষ বলা হয়। বাংলা পরিভাষা অধিবর্ষ কথাটার অর্থও কাছাকাছি- অর্থ্যাৎ যে বছরে বাড়তি কিছু আছে।

পৃথিবী সূর্যের চারদিকে ঘুরে আসতে ৩৬৫ দিনের চেয়ে বেশি সময় নেয় 

বছর গড়াবার সাথে সাথে যদি লিপ ইয়ারের এই সংশোধনী করা না হত তাহলে পঞ্জিকার বছর সৌর বছর থেকে দূরে সরতে থাকত। এক সময় তা হয়ে যেত খুব বেশি। চার বছরে পার্থক্য হত ১ দিন। ১০০ বছরে পার্থক্য হত ২৫ দিন। বোঝাই যাচ্ছে, বছর আরো বেশি হয়ে গেলে পার্থক্য ভয়াবহ রূপ লাভ করত। এক সময় দেখা যাবে উত্তর গোলার্ধের শীতকাল শুরু হচ্ছে জুন মাসে !

বর্তমান গ্রেগরিয়ান ক্যালেন্ডার হচ্ছে জুলিয়ান ক্যালেন্ডারের উন্নত রূপ। সর্বপ্রথম ৪৬ খৃস্টপূর্ব সালে জুলিয়ান ক্যালেন্ডারে অধি দিন (Leap day) যুক্ত করা হয়। আলেকজান্দ্রিয়ান জ্যোতির্বিদ সসিজেনেসের পরামর্শে জুলিয়াস সিজার কাজটি করেন। ১৫৮২ সালে পোপ গ্রেগোরি জুলিয়ান ক্যালেন্ডারের উন্নতি সাধন করেন। সহায়তা করেন জার্মান গণিতবিদ ও জ্যোতির্বিদ ক্রিস্টোফার ক্ল্যাভিয়াস।

জার্মান গণিতবিদ ও জ্যোতির্বিদ ক্রিস্টোফার ক্ল্যাভিয়াস

গ্রেগরিয়ান ক্যালেন্ডারে আরো নিয়ম করা হয়, যেসব বছরের শেষে '০০'থাকবে তাতে বাড়তি দিন যুক্ত করা হবে না। তবে '০০' যুক্ত বছরটি যদি ৪০০ দিয়ে বিভাজ্য হয় তাহলে কিন্তু সেটি আবার লিপ ইয়ার হবে। কিন্তু এই নিয়ম আবার কেন দরকার হল?

একটু খেয়াল করলে দেখবেন, উপরে আমরা বলেছি পৃথিবী সূর্যকে ঘুরে আসতে প্রায় ৩৬৫.২৫ দিন লাগে। এটাও প্রকৃত মান নয়। প্রকৃত মান হচ্ছে ৩৬৫.২৪২২ দিন বা বা ৩৬৫ দিন ৫ ঘন্টা ৪৮ মিনিট ৪৭ সেকেন্ড। ফলে হাজার বছরের ব্যাবধানে সেটাও উল্লেখযোগ্য হয়ে দাঁড়ায়। যে বছরগুলোতে লিপ ইয়ার হয়েছে বা হবে তারা হচ্ছে-

1600 1604 1608 1612 1616 1620 1624 1628 1632 1636 1640 1644 1648 1652 1656 1660 1664 1668 1672 1676 1680 1684 1688 1692 1696 1704 1708 1712 1716 1720 1724 1728 1732 1736 1740 1744 1748 1752 1756 1760 1764 1768 1772 1776 1780 1784 1788 1792 1796 1804 1808 1812 1816 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 2052 2056 2060 2064 2068 2072 2076 2080 2084 2088 2092 2096 2104 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152।

খেয়াল করলে দেখা যাবে ২০০০ সাল অধিবর্ষ ছিল কারণ এটি ৪০০ দিয়ে বিভাজ্য। কিন্তু এই শর্ত পূরণে অক্ষম ১৯০০ সাল অধিবর্ষ হতে পারেনি।

১৫৮২ সাল থেকে গ্রেগোরিয়ান ক্যালেন্ডার ব্যবহৃত হচ্ছে বিশ্বজুড়ে।

২০১৬ সালের লিপ ইয়ার আরেক দিক থেকে একটু বিশেষত্বের অধিকারী। এটি শুরু হয়েছে শুক্রবারে। এমনটি কিন্তু খুব বেশি ঘটে না কিন্তু। এর আগে এ রকম বছরগুলো ছিল ১৯৩২, ১৯৬০ এবং ১৯৮৮। আগামীতে এ রকম মজার অধিবর্ষ আবার পাওয়া যাবে ২০৪৪ ও ২০৭২ সালে। তার মানে ২৮ বছর পরপর এমন হয়।
বাংলায়ও কিন্তু অধিবর্ষ আছে। প্রতি চার বছর পরপর বাংলা ফাল্গুন মাসে এক দিন বেশি হয়ে ৩১ দিন হয়।

সূত্র
[১] উইকিপিডিয়াঃ জুলিয়ান ও গ্রেগরিয়ান ক্যালেন্ডার
[২] Earth Sky
[৩] শুক্রবারে শুরু হওয়া লিপ ইয়ার

Category: articles

বৃহস্পতিবার, ১৮ ফেব্রুয়ারী, ২০১৬

এ মাসের আকাশের সেরা দৃশ্য দেখতে হলে আজকে আকাশ মিস করা উচিত হবে না।
কারণ, আজকে চাঁদ মামা বসে আছে উইন্টার সার্কেলের ভেতরে। আকাশের অন্যতম ৬টি উজ্জ্বল তারকা মিলে তৈরি এই অ্যাসটারিজমটিকে উইন্টার হেক্সাগন বা শীতের ষড়ভুজও বলে। সামার ট্রায়াঙ্গেল যেমন শীতের শুরুতেও দেখা যায়, তেমনি উইন্টার সার্কেলও শীতের পরেও আকাশে সৌন্দর্য্য বিকিরণ করা চালিয়ে যেতে থাকে।
চাঁদ ও উইন্টার সার্কেল/হেক্সাগন

উইন্টার সার্কেলের অন্যতম নক্ষত্র রিগেল আবার আদম সুরতের অংশ। আপনি আদম সুরত বা কালপুরুষ চিনে ফেললে উইন্টার সার্কেল সহজেই চিনতে পারবেন। 
রাতের আকাশের উজ্জ্বলতম নক্ষত্র লুব্ধকও আছে এখানেই। 
Category: articles

রবিবার, ১৪ ফেব্রুয়ারী, ২০১৬

আমরা জানি, আলোর এক বছরে অতিক্রান্ত দূরত্বকে আলোকবর্ষ বলে। এ জন্যেই এই নিবন্ধে আমরা সেটা আলোচনা করতে যাচ্ছি না। আমরা এখানে দেখতে চাচ্ছি, এই এককটি আসলে কী কাজে লাগে। তবে কয়েকটি মান আবার জাবর কেটে নেওয়া উচিত। আলোর বেগ হচ্ছে সেকেন্ডে ১ লক্ষ ৮৬ হাজার মাইল বা ৩ লক্ষ কিলোমিটার। আর আলোকবর্ষের মান প্রায় ৯ ট্রিলিয়ন কিলোমিটার বা প্রায় ৬ ট্রিলিয়ন মাইল।

এই এককটি ব্যবহারের মাধ্যমে মহাজাগতিক বিভিন্ন বস্তুর দূরত্বের তাৎপর্য এবং পারস্পরিক তুলনা খুব সহজে করা যায়।  সাধারণত নক্ষত্র এবং ছায়াপথের দূরত্ব পরিমাপের ক্ষেত্রে এটি বেশি ব্যবহৃত হয়।এর ব্যবহারগুলো দেখা যাকঃ-
১. এখন পর্যন্ত মানুষের পাঠানো সবচেয়ে দূরবর্তী মহাকাশযান হচ্ছে ভয়েজার ১। ২০১৪ সালের অক্টোবরে এর দূরত্ব ছিল ১৮ আলোকঘণ্টা। বুঝতেই পারছেন, আলো এক ঘণ্টায় যত দূর যাবে সেটাই আসলে এক আলোকঘণ্টা। বর্তমানে সূর্যের সাপেক্ষে যানটির বেগ সেকেন্ডে ১৭ কিলোমিটার (ঘন্টায় ৩৮ হাজার মাইল)। এই বেগ নিয়ে চলতে থাকলে যানটি আরো প্রায় ১৭ হাজার ৫০০ বছর পরে ১ আলোকবর্ষ দূরত্বে পৌঁছবে। ২০১২ সালের আগস্টে এটি প্রথম কোন যান হিসেবে সৌরজগতের চৌহদ্দি পার হয়।
আন্তঃনাক্ষত্রিক জগতে বিচরণ করছে ভয়েজার ১। ছবিঃ নাসা

২. সৌরজগতের অন্যতম দূরবর্তী  অঞ্চল উর্ট ক্লাউডের ব্যাস প্রায় ২ আলোকবর্ষ।
৩. সূর্যের নিকটতম নক্ষত্র প্রক্সিমা সেন্টোরির দূরত্ব ৪.২২ আলোকবর্ষ।
৪. সূর্যের অভিকর্ষের সর্বোচ্চ পাল্লা ২ আলোকবর্ষ পর্যন্ত বিস্তৃত। এর বাইরে সূর্যের আধিপত্যে নাক গলায় আন্তঃনাক্ষত্রিক বস্তু।
৫. লুব্ধক আমাদের রাতের আকাশের সবচেয়ে উজ্জ্বল নক্ষত্র। এর দূরত্ব ৮.৬ আলোকবর্ষ।
৬. এইচডি ১০৭০০ ই (HD 10700 e) একটি সম্ভাব্য বাসযোগ্য বহির্গ্রহ (Exoplanet)। এর দূরত্ব ১১.৯ আলোকবর্ষ।
আরো পড়ুনঃ বৃহত্তম বহির্গ্রহ; ট্রেস-৪

৭. গ্লিজ ৫৮১ (Gliese 581) একটি লোহিত বামন নক্ষত্র। এর চারদিকে প্রদক্ষিণরত বেশ কিছু বাসযোগ্য গ্রহ পাওয়া গেছে। নক্ষত্রটির দূরত্ব ২০ আলোকবর্ষ।
৮. রাতের আকাশের ২য় উজ্জ্বল নক্ষত্র সুহাইল (Canopus)। এর দীপ্তি সূর্যের ১৫ হাজার গুণ। দূরত্বে এটি ৩১০ আলোকবর্ষ।
৯. আমাদের নিজস্ব গ্যালাক্সি মিল্কিওয়ের কেন্দ্র ২৬ হাজার আলোকবর্ষ দূরত্ব অবস্থিত।
১০. মিলিওয়ের নিজের ব্যাস প্রায় ১ লাখ আলোকবর্ষ।
১১. অ্যান্ড্রোমিডা গ্যালাক্সি প্রায় ২৫ লাখ আলোকবর্ষ দূরে অবস্থিত।
১২. খালি চোখে দৃশ্যমান সবচেয়ে দূরবর্তী বস্তু হচ্ছে ট্রায়াঙ্গুলাম গ্যালাক্সি। এর দূরত্ব ৩০ লাখ আলোকবর্ষ।
১৩. আমাদের নিকটতম গ্যালাক্সি ক্লাস্টার বা ছায়াপথ স্তবক ভার্গো ক্লাস্টারের দূরত্ব ৫ কোটি ৯০ লাখ আলোকবর্ষ।
১৪. ছায়াপথের দেয়াল স্লোয়ান গ্রেট ওয়ালের (Sloan Great Wall) দূরত্ব এক বিলিয়ন আলোকবর্ষ।
১৫. সবচেয়ে উজ্জ্বল কোয়াসার ৩সি ২৭৩ (3C 273) এর দূরত্ব ২.৪ বিলিয়ন আলোকবর্ষ।

সূত্রঃ
[১] উইকিপিডিয়াঃ Light year
Category: articles

শনিবার, ১৩ ফেব্রুয়ারী, ২০১৬

আমরা জানি, বাসযোগ্য (Habitable) হতে হলে একটি গ্রহকে সংশ্লিষ্ট নক্ষত্র (যেমন আমাদের ক্ষেত্রে সূর্য) থেকে একটি নির্দিষ্ট দূরত্বে অবস্থিত হতে হয়। নক্ষত্র থেকে দূরের এই অঞ্চলটিকে হতে হয় একদম পারফেক্ট- খুব উষ্ণও নয় আবার খুব শীতলও নয়।  প্রশ্ন হতে পারে খোদ গ্যালাক্সির ক্ষেত্রেও কি এমন কোন শর্ত আছে?

গ্রহ ব্যবস্থার ক্ষেত্রে বাসযোগ্যতার যে শর্ত তা প্রযোজ্য হতে পারে গ্যালাক্সির ক্ষেত্রেও। অর্থ্যাৎ, গ্যালক্সিদের ক্ষেত্রেও এমন একটি অঞ্চল থাকবে যেখান গ্রহরা বেড়ে উঠতে পারবে। কেপলার স্পেইস টেলিস্কোপসহ কিছু মিশন সৌরজগতের বাইরে হাজার হাজার গ্রহের সন্ধান পাচ্ছে। এই বহির্গ্রহদের সংখ্যা এবং অবস্থান চোখে পড়ার মত।
তবে গ্যালাক্সিদের ক্ষেত্রে বাসযোগ্য গ্রহের অঞ্চল থাকার বিষয়টি এখনো বিতর্কের উর্ধ্বে উঠতে পারেনি। জ্যোতির্পদার্থবিদ গুইলিয়েরমো গনজালেজ এর মতে, একটি গ্রহকে ছায়াপথ কেন্দ্র (Galactic center) থেকে এত দূরে থাকতে হবে যাতে এটি ক্ষতিকারক বিকিরণ এড়াতে পারে। আবার এর অবস্থান এত বেশি দূরেও হওয়া চলবে না যাতে এতে যথেষ্ট পরিমাণ ভারী মৌল তৈরি হতে সমস্যা হয়। ফলে গ্যালাক্সির কেন্দ্র থেকে ২৫ হাজার আলোকবর্ষ দূরে ৬ হাজার আলোকবর্ষব্যাপী একটি অঞ্চল বাসযোগ্যতার আওতায় পড়ে। এর অবস্থান হয় কেন্দ্র ও প্রান্তের প্রায় মাঝামাঝিতে।
তবে, গ্যালাক্সিতে বাসযোগ্য গ্রহের অবস্থানের নিখুঁৎ সীমানা চিহ্নিত করার মত যথেষ্ট গ্রহ এখনো আবিষ্কৃত হয়নি। অবশ্য, দিন দিন এ সংশ্লিষ্ট জ্ঞান ও তথ্যের ভাণ্ডার সমৃদ্ধ হচ্ছে।

সূত্রঃ
[১] স্পেইস আনসার
[২] গুলিয়েরমো গনজালেজ
Category: articles
অধিকাংশ অন্যান্য গ্যালাক্সির মতই এনজিসি ৪৮৮৯ গ্যালাক্সির কেন্দ্রে বাস করছে একটি বিশাল ভরযুক্ত ব্ল্যাক হোল। জ্যোতির্বিদদের ধারনা, এটি নাওয়া-খাওয়া বন্ধ করে এখন বিশ্রাম নিচ্ছে।
শত শত গ্যালাক্সির ভীড়ে এনজিসি ৪৮৮৯ গ্যালাক্সির ছবি। এরই কেন্দ্রে লোকচক্ষুর আড়ালে লুকিয়ে আছে একটি ব্ল্যাক হোল। 
উপরের ছবির সবচেয়ে উজ্জ্বল এবং বড় গ্যালাক্সিটিই এনজিসি ৪৮৮৯। ৩০ কোটি আলোকবর্ষ দূরে কোমা গ্যলাক্সি ক্লাস্টারে এর অবস্থান। এর কেন্দ্রে থাকা সুপারম্যাসিভ ব্ল্যাক হোলটি আগের অনেক রেকর্ড ভেঙ্গে দিয়েছে। এর ভর সূর্যের ২১ বিলিয়ন (বা ২ হাজার ১০০ কোটি) গুণ।
অন্য দিকে এর ঘটনা দিগন্তের ব্যাস ১৩ হাজার কোটি কিলোমিটার। এই পাল্লাটি সূর্য থেকে নেপচুনের কক্ষপথের দূরত্বের ১৫ গুণ।  ঘটনা দিগন্ত হচ্ছে একটি ব্ল্যাক হোলের বাইরে সেই অঞ্চল যেখান থেকে আলোও বেরিয়ে আসতে পারে না। ফলে এর ভেতরের কিছু দেখা সম্ভব হয় না। অন্য দিকে, আমাদের নিজেদের গ্যালাক্সি মিল্কিওয়ের কেন্দ্রে থাকা সম্ভাব্য ব্ল্যাক হোলখানির ভর সূর্যের ৪০ লাখ গুণ। এর ঘটনা দিগন্তের পাল্লা বুধের কক্ষপথের এক পঞ্চমাংশ মাত্র।
কিন্তু আলোচ্য গ্যালাক্সির কেন্দ্রে থাকা ব্ল্যাক হোলের রাক্ষুসে আচরণের সমাপ্তি ঘটেছে। এনজিসি ৪৮৮৯ এর খাবার কক্ষে এটি এখন বিশ্রামরত। বর্তমানে এর আশেপাশে নতুন জন্মানো তারকারা শান্তিতে বেড়ে উঠছে এবং একে প্রদক্ষিণও করছে। 
অন্য ব্ল্যাক হোলের মতই এটি বিভিন্ন গ্যালাকটিক বস্তু যেমন গ্যাস, ধূলিকণা ও অন্যান্য ধ্বংশাবশেষ সাবাড় করে করে একটি আক্রেশন ডিস্ক (Accretion disk) গঠন করে। গ্যাস-ধূলিকণার ঘুর্ণায়মান এই চাকতিকে ব্ল্যাক হোলটি তীব্র অভিকর্ষীয় ত্বরণে নিজের দিকে আকর্ষণ করে। পরিণামে চাকতির তাপমাত্রা উঠে যায় লক্ষ ডিগ্রি পর্যন্ত। এই উত্তপ্ত বস্তু কতৃক নির্গত হয় দানবীয় এবং শক্তিশালী জেট বা ফোয়ারা । 
সক্রিয় থাকায় সময় জ্যোতির্বিদরা ব্ল্যাক হোলটিকে কোয়াসার শ্রেণিতে নাম তালিকাবদ্ধ করেন। ব্ল্যাক হোলটির ডিস্ক মিল্কিওয়ের চেয়ে হাজার গুণ বেশি শক্তি নির্গত করত। ডিস্কটি ব্ল্যাক হোলের খাবারের যোগান দিয়ে দিতে দিতে এক পর্যায়ে আশেপাশের সব গ্যালাকটিক বস্তু নিঃশেষ করে ফেলে। ফলে, এটি এখন সুপ্ত অবস্থায় রয়েছে। তবু, রহস্যময় কোয়াসাররা মহাবিশ্বের শৈশবকালে কিভাবে গঠিত হয়েছিল তা জানতে ব্ল্যাক হোলটি জ্যোতির্বিদদের গবেষণার কাজে আসবে। 
আলো বেরিয়ে আসতে পারে না বলে ব্ল্যাক হোলকে সরাসরি দেখা না গেলেও পরোক্ষ উপায়ে এর ভর বের করা যায়। এনজিসি ৪৮৮৯ গ্যালাক্সির চারদিকে প্রদক্ষিণরত নক্ষত্রদের বেগ পরিমাপ করা সম্ভব হয়েছে। এই বেগ থেকেই জানা গেছে ব্ল্যাক হোলটির বিশাল ভরের তথ্য।  


Category: articles

বৃহস্পতিবার, ১১ ফেব্রুয়ারী, ২০১৬

অনুসন্ধান চলছিল ১০০ বছর ধরে। এবারে আন্তর্জাতিক এক দল পদার্থবিদ ঘোষণা দিলেন, পাওয়া গেছে মহাকর্ষ তরঙ্গ (Gravitational wave)। ফলে সত্যি হল আইনস্টাইনের সাধারণ আপেক্ষিক তত্ত্বের আরেকটি গুরুত্বপূর্ণ ভবিষ্যদ্বাণী। এর আগে স্থান-কালের বক্রতার প্রতিক্রিয়া প্রত্যক্ষ করা গেলেও বিশাল ভরের বস্তুরা এই বক্রতা যে তরঙ্গের মাধ্যমে  চারপাশে ছড়িয়ে দেয় তাকে সরাসরি শনাক্ত করা সম্ভব হয়নি।

লিগো অবজারভেটরির নির্বাহী পরিচালক ডেভিড রিজ ঘোষণাটি দেন। তিনি একে ৪০০ বছর আগে গ্যালিলিওর টেলিস্কোপ আবিষ্কারের সাথে তুলনা করেন। এর কারণ হতে পারে, তখন টেলিস্কোপের মাধ্যমে গ্যালিলিও মহাকাশের অনেক অজানাকে নিয়ে আসেন চোখের সামনে। একইভাবে বর্তমানে আবিষ্কৃত মহাকর্ষীয় তরঙ্গও মহাবিশ্বের একটি রহস্যময় বস্তুকে নিয়ে এল ধরাছোঁয়ার মধ্যে।

মহাকাশের নতুন এক দিগন্ত খুলে দেওয়া এই আবিষ্কার যে নোবেল পুরস্কার পাবার যোগ্য তা নিয়ে খুব বেশি সন্দেহ নেই।

মহাকর্ষ তরঙ্গ সৃষ্টির জন্যে প্রয়োজন উত্তাল কোন ঘটনা। এটা হতে পারে সুপারনোভা, দুটি নিউট্রন নক্ষত্রের সংঘর্ষ বা ব্ল্যাক হোলের মিশ্রণ। মহাবিশ্বের ফেব্রিকের এই কম্পন বা স্থান-কালের বক্রতা চলে আলোর বেগে। পৃথিবীতে পৌঁছতে পৌঁছতে একটি পরমাণুর ব্যাসের বিলিয়ন ভাগের এক ভাগ হয়ে যায় এটি। এ কারণেই এদেরকে ধরতে বিজ্ঞানীদের খুব বেশি চতুরতার পরিচয় দিতে হয়েছে।
এর পেছনে কাজ করা প্রতিষ্ঠানটি হচ্ছে লিগো- Laser Interferometer Gravitational-Wave Observatory। এটি অনলাইনে আসে ২০০২ সালে। কিন্তু সফলতা আসছিল না। পরে লিগো এর যান্ত্রিক সংবেদনশীলতা বাড়ায় ১০ গুণ। ফলে, উন্নততর লিগো আগের চেয়ে ১০ হাজার গুণ বেশি আয়তনের অঞ্চল থেকে মহাকর্ষ তরঙ্গ শনাক্ত করতে সক্ষম হয়। এ কারণে নতুন পরিস্থিতিতে সাফল্যের সম্ভাবনা বেড়ে গিয়েছিল।
এই সাফল্য মহাবিশ্বের আরেকটি জানালা খুলে দিল আমাদের সামনে। এটা ঠিক যেন এ রকম যে আগে আমরা অন্ধ ছিলাম, আর এখন দেখতে পাচ্ছি মহাবিশ্বকে। এই তরঙ্গ কাজে লাগিয়ে বিজ্ঞানীরা ব্ল্যাক হোল, নিউট্রন স্টার এবং শিশু মহাবিশ্ব নিয়ে নতুনভাবে গবেষণা করতে পারবেন যা আগে ছিল অচিন্তনীয়।
এটা আইনস্টাইনের সাধারণ আপেক্ষিক তত্ত্বের সর্বশেষ বড় পূর্বাভাস।

সূত্রঃ Earth sky
Category: articles

মঙ্গলবার, ৯ ফেব্রুয়ারী, ২০১৬

আমরা জানি, চাঁদ পৃথিবীর চারদিকে প্রদক্ষিণ করে। কিন্তু চাঁদকি নিজের অক্ষের সাপেক্ষেও ঘোরে? সাধারণত মনে হতে পারে, উত্তর নেতিবাচক কারণ আমরা জানি, চাঁদের একটি পৃষ্ঠই সব সময় পৃথিবীর দিকে মুখ করে থাকে।

দেখে নিনঃ আবর্তন ও প্রদক্ষিণের পার্থক্য
আসলে, চাঁদ যদি আবর্তন না করত, তবেই আমরা একেক সময় একেক অংশ দেখতে পেতাম যখন এটি কক্ষপথের ভিন্ন ভিন্ন অবস্থানে থাকত।
ঘটানাটি প্র্যাকটিক্যালি বুঝতে হলে একজন বন্ধুকে সামনে দাঁড় করিয়ে রাখুন। বন্ধু কাছে না থাকলে একটু বস্তুকে বন্ধুর জায়গায় কল্পনা করুন। মনে করুন, ও হচ্ছে পৃথিবী। এবার আপনি নিজেকে চাঁদ ধরে নিয়ে তার চারপাশে ঘুরে আসুন। খেয়াল রাখতে ঘুরে আসার সময় আপনারা সব সময় মুখোমুখি থাকবেন। ঘোরা শেষ হলে কী দেখা গেল? একেক সময় আপনি রুমের একেক অংশ দেখলেন। এ থেকে প্রমাণিত হয়, আপনি আবর্তন করেছেন মানে নিজের অক্ষের সাপেক্ষে ঘুরেছেন।
এবার আবার ঘুরেন। এবারে ঘুরে আসার সময় দেয়ালের একটি নির্দিষ্ট অংশের দিকে তাকিয়ে থাকুন। এর অর্থ হচ্ছে এবার শুধু প্রদক্ষিণই করবেন, আবর্তন নয়। খেয়াল করুন, এ ক্ষেত্রে বন্ধু আপনার পেছনের, সামনের, পাশ্বের- সব অংশ দেখতে পাবে।
তবে, মজার ব্যাপার হচ্ছে চাঁদ পৃথিবীকে প্রদক্ষিণ করতে যত সময় নেয়, ততক্ষণেই একবার আবর্তন সম্পন্ন করে। এ কারণেই আসলে আমরা সব সময় এর একই পৃষ্ঠ দেখি। অবশ্য আরো কিছু কারণে সব মিলিয়ে আমরা বিভিন্ন সময়ে চাঁদের প্রায় ৫৯% পর্যন্ত অংশ দেখতে পাই। তবে, এক সাথে অবশ্যই ৫০% এর বেশি দেখি না।

সূত্রঃ
১। কর্নেল ইউনিভার্সিটি
২। Earth Sky
Category: articles

সোমবার, ৮ ফেব্রুয়ারী, ২০১৬

বলয়সহ নীল ও সোনালী রঙে শনি গ্রহ 

বিবরণঃ
আপনি যদি বলয়ধারী গ্রহটির কাছাকাছি অবস্থানে ভেসে থাকতে পারতেন, তবে একে উপরের ছবির মত দেখবেন। ২০০৬ সালের মার্চে মহাকাশযান ক্যাসিনি ছবিটি সংগ্রহ করে। রোবটজাতীয় এই স্পেসশিপটির কার্যক্রম ২০১৬ এসেও চালু আছে। শনির রাজকীয় বলয়টি এখানে শুধুই একটি উলম্ব দাগের মত দেখাচ্ছে। বলয়ের সমতলেই দেখা যাচ্ছে শনির উপগ্রহ এনচেলাডাস। উপগ্রহটির ব্যাস মাত্র ৫০০ কিলোমিটার।
শনি গ্রহের উত্তর গোলার্ধ দেখতে আংশিক নীল। পৃথিবীর আকাশ যে কারণে নীল তার সাথে এই ঘটনার মিল আছে। দুই গ্রহের ক্ষেত্রেই মেঘহীন বায়ুমণ্ডলের অণু লাল আলোর চেয়ে নীল আলো সহজে বিক্ষেপণ করতে পারে- নীল আলোর তরঙ্গদৈর্ঘ্য কম বলে।  তবে মেঘ এড়িয়ে গ্রহটির আরো গভীরে দৃষ্টিপাত এর সহজাত সোনালী রঙ গোচরে আসে। শনির দক্ষিণ গোলার্ধ কেন নীল রঙ প্রদর্শন করে না তা এখনো জানা সম্ভব হয়নি। গ্রহটিতে ভেসে থাকা মেঘেরা সোনালী দেখায়ো কেন তাও জানা যায়নি।
শনি গ্রহ দেখতে খানিকটা নীল কেন? 
Category: articles
লুব্ধক (Sirius) রাতের আকাশের সবচেয়ে উজ্জ্বল নক্ষত্র। কিন্তু লুব্ধককে কীভাবে খুঁজে পাব? লুব্ধক আকাশের কোন দিকে থাকে? কোন মাসে বা ঋতুতে একে ভালো দেখা যায়?
লুব্ধককে খুঁজে পেতে হলে তার আগে খুঁজে নিতে হবে আদম সুরত বা কালপুরুষ তারামণ্ডলীটিকে। খুশির খবর হচ্ছে, আদম সুরত হচ্ছে সেই সব তারামণ্ডলীর মধ্যে অন্যতম যাদেরকে সহজেই খুঁজে পাওয়া যায়।

 তারামণ্ডলীর পরিচয়

বছরের বিভিন্ন মাসের মধ্যে মে, জুন, জুলাই- এই তিন মাস আদম সুরত ও লুব্ধক সূর্যের কাছাকাছি সময়ে অস্ত যায় বলে এ মাসগুলোতে এদেরকে দেখা যায় না। আগস্টের দিকে ভোরের পূর্ব আকাশে এরা পুনরায় দেখা দিতে শুরু করে। প্রতি দিন প্রায় চার মিনিট আগে আগে এরা উদিত হয়। ফলে জানুয়ারি থেকে এপ্রিল মাসে এদেরকে সন্ধ্যার আকাশেই খুব সহজে চোখে পড়ে। এপ্রিল মাসে সন্ধ্যায় এরা থাকে পশ্চিম আকাশে। তার একটু পরেই ডুবে যায়।

আদমসুরত ও লুব্ধক

তবে লুব্ধক খুঁজে পাবার সেরা সময় হিসেবে আপনি ফেব্রুয়ারি মাসকে বাছাই করতে পারেন। এ সময় রাত নয়টার দিকে এটি সোজা দক্ষিণ আকাশে থাকবে, মাথার খাড়া উপর থেকে কিছুটা নিচে।
কতটা নিচে?

এটা বুঝতে হলে আপনাকে বিষুবলম্ব বুঝতে হবে। এটা না বুঝেও বের করা সম্ভব। তাই বেশি গভীরে যেতে না চাইলে বাকি অংশ না পড়লেও চলবে। লুব্ধকের বিষুব লম্ব হচ্ছে প্রায় (-১৭) ডিগ্রি। অর্থ্যাৎ, বাংলাদেশ থেকে দেখতে হলে মাথার খাড়া উপর থেকে (২৩+১৭) = ৪০ ডিগ্রি দক্ষিণে যেতে হবে।

উজ্জ্বল তারাদের গল্প

এছাড়াও বিভিন্ন গ্রহ ও নক্ষত্রদের খুঁজে পাবার ব্যাপারে নিয়মিত আপডেট পেতে এই দুটি লিঙ্ক ফলো করুন
Category: articles
[নোটঃ পরভাষাগুলো সাজানোর ক্ষেত্রে বাংলা একাডেমির বর্ণানুক্রম মেনে চলার চেষ্টা করা হয়েছে]

অনিশ্চয়তা নীতি (Uncertainty principle): হাইজেনবার্গের প্রদান করা এই নীতি যে, কোনো কণিকার অবস্থান ও বেগ একইসাথে নিশ্চিত করে জানা সম্ভব নয়। এর একটি যত বেশি নির্ভুলভাবে পরিমাপ করা হবে, অপরটি সম্পর্কে পাওয়া তথ্য ততই অনিশ্চিত হয়ে পড়বে।

আইন্সটাইন- রোজেন সেতু (Einstein-Rosen bridge): স্থান- কালের একটি সরু টিউব, যা দুটি ব্ল্যাক হোলকে যুক্ত করে। আরো দেখুন, ওয়ার্মহোল

আলোকবর্ষ (light-year): আলো এক বছরে যে দূরত্ব অতিক্রম করে। (* মনে রাখতে এটি, আলোক-সেকেন্ড এবং এই জাতীয় এককগুলো সময়ের নয়, দূরত্বের একক)

আলোক-সেকেন্ড (Light-second): আলো এক সেকেন্ডে যে দূরত্ব অতিক্রম করে।

অ্যানথ্রোপিক নীতি (Anthropic principle): আমরা মহাবিশ্বকে এখন যেমন দেখছি এর এমন হওয়ার পেছনে কারণ হচ্ছে, এটি যদি এমন না হত তাহলে একে পর্যবেক্ষণ করার মতো এখানে থাকতামই না।

ইলেকট্রন (Electron): নিউক্লিয়াসের চারদিকে ঘুর্ণনরত নেগেটিভ বা ঋণাত্মক চার্জধারী কণিকা।

ইলেকট্রিক চার্জ বা তড়িৎ আধান (Electric charge): কণিকার এমন ধর্ম যার মাধ্যমে এটি বিপরীত চার্জধারী অন্য কণিকাকে আকর্ষণ করে এবং একই রকম চার্জধারী কণিকাকে বিকর্ষণ করে।

ইলেকট্রোউইক ইউনিফিকেশান এনার্জি (Electroweak unification energy): শক্তির যে পরিমাণকে (১০০ গিগা ইলেকট্রোভোল্ট) ছাড়িয়ে গেলে তড়িচ্চুম্বকীয় বল এবং দুর্বল নিউক্লিয়ার বলের মধ্যে কোনো পার্থক্য থাকে না।

ওজোন (Weight): মহাকর্ষীয় (বা অভিকর্ষীয়) ক্ষেত্র দ্বারা কোনো বস্তুর উপর প্রযুক্ত বল। এটি ভরের সমানুপাতিক কিন্তু সমান নয়। (* আমরা সাধারণত যাকে ওজোন বলি, সেটি আসলে ভর। ভরের সাথে অভিকর্ষীয় ত্বরণ গুণ করলে ওজোন পাওয়া যায়)। আরো দেখুন, অভিকর্ষীয় ত্বরণ।

ওয়ার্মহোল (Wormhole): মহাবিশ্বের দূরবর্তী দুটি অঞ্চলের সংযোগ প্রদানকারী একটি পাতলা টিউব বা সুড়ঙ্গ। ওয়ার্মহোলের অপর প্রান্তে সমান্তরাল বা শিশু মহাবিশ্ব থাকতে পারে, যার মাধ্যমে সময় ভ্রমণ সম্ভব হতে পারে।
মহাবিশ্বের দূরবর্তী দুটি অঞ্চলের সংযোগ প্রদানকারী একটি পাতলা টিউব বা সুড়ঙ্গকে ওয়ার্মহোল বলা হয়
কণা ত্বরকযন্ত্র (Particle accelerator): যে মেশিনের সাহায্যে ইলেকট্রোম্যাগনেট বা তড়িচ্চুম্বক ব্যবহার করে বেশি শক্তি দিয়ে দিয়ে গতিশীল চার্জধারী কণিকাদের বেগ বৃদ্ধি করা যায়।

কণা- তরঙ্গ দ্বৈততা (Wave/particle duality): কোয়ান্টাম মেকানিক্সের এই নীতি যে, কণিকা ও তরঙ্গের মধ্যে কোনো পার্থক্য নেই। কোনো সময় কণিকা আচরণ করে তরঙ্গের মতো, আবার কখনো তরঙ্গ কণিকার মতো আচরণ করে।

কসমোলজি বা মহাবিশ্বতত্ত্ব (Cosmology): সামগ্রিকভাবে মহাবিশ্ব নিয়ে আলোচনা করা হয়ে যে শাস্রে।

কোয়ান্টাম (Quantum): কোনো পারমাণবিক প্রতিক্রিয়ায় অংশ নেওয়া বস্তুর সর্বনিম্ন পরিমাণ।

কোয়ান্টাম মেকানিক্স (Quantum mechanics): প্ল্যাঙ্কের কোয়ান্টাম নীতি ও হাইজেনবার্গের অনিশ্চয়তা নীতি থেকে প্রস্তুত করা থিওরি।

কোয়ার্ক (Quark): একটি চার্জধারী মৌলিক কণিকা, যা সবল নিউক্লিয়ার বল অনুভব করে। প্রোটন ও নিউট্রন দুটি কণিকাই তিনটি করে কোয়ার্ক দ্বারা গঠিত।

কম্পাঙ্ক বা ফ্রিকুয়েন্সি (Frequency): কোনো তরঙ্গ প্রতি সেকেন্ডে যতগুলো চক্র বা কম্পন সম্পন্ন করে।

ক্ষেত্র (Field): এমন কিছু যা স্থান- কালের উল্লেখযোগ্য অংশে বিস্তৃত । এটি কণিকার বিপরীত, যা নির্দিষ্ট কোনো সময়ে শুধু একটি বিন্দুতেই অবস্থান করে।

গামা রশ্মি (Gamma rays): খুব ক্ষুদ্র তরঙ্গদৈর্ঘ্যের তড়িচ্চুম্বকীয় রশ্মি। তেজস্ক্রিয় বিকিরণ বা মৌলিক কণিকাদের সংঘর্ষের ফলে এটি উৎপন্ন হয়। আরো দেখুন, তেজস্ক্রিয়তা।

গ্র্যান্ড ইউনিফায়েড থিওরি বা মহা-সমন্বয় তত্ত্ব (Grand unified theory বা GUT): যে থিওরি তড়িচ্চুম্বকীয় এবং সবল ও দুর্বল নিউক্লিয়ার বলকে একীভূত করে।

ঘটনা (Event): নির্দিষ্ট স্থান ও সময়বিশিষ্ট স্থান- কালের উপরস্থ কোনো বিন্দু।

ঘটনা দিগন্ত (Event horizo): ব্ল্যাক হোলের সীমানা (*ব্ল্যাক হোলের চারপাশের যে অঞ্চলের বাইরে আলো আসতে পারে না)।

চৌম্বক ক্ষেত্র বা ম্যাগনেটিক ফিল্ড (Magnetic field): চৌম্বক বলের জন্যে দায়ী ক্ষেত্র। তড়িৎ ক্ষেত্রের (electric field) সাথে সমন্বিত হয়ে এটি এখন তড়িচ্চুম্বকীয় ক্ষেত্রের অংশ।

ডার্ক ম্যাটার (Dark matter): গ্যালাক্সি, গ্যালাক্সিপুঞ্জ ও এদের মাঝে অবস্থিত সেসব বস্তু যাদেরকে এখনো সরাসরি দেখা সম্ভব হয়নি। কিন্তু মহাকর্ষীয় প্রভাবের কারণে এদের উপস্থিতি টের পাওয়া যায়। মহাবিশ্বের অন্তত ৯০ ভাগ ভরই ডার্ক ম্যাটার।

তড়িচ্চুম্বকীয় বল (Electromagnetic force): ইলেকট্রিক চার্জধারী কণিকাদের মধ্যে যে বল কাজ করে। চার প্রকার মৌলিক বলের মধ্যে শক্তিতে দ্বিতীয়।

তরঙ্গদৈর্ঘ্য (Wavelength): কোনো তরঙ্গের পাশাপাশি অবস্থিত দুটি চূড়া বা খাঁজের মধ্যে দূরত্ব। [চিত্র দেখুন]

তেজস্ক্রিয়তা (Radioactivity): কিছু কিছু পরমাণু নিজেই নিজেই অন্য পরমাণুতে পরিণত হবার যে প্রক্রিয়া।

দশা (Phase): নির্দিষ্ট সময়ে কোনো তরঙ্গের অবস্থান। এর মাধ্যমে বোঝা যায় যে তরঙ্গের অবস্থান কি খাঁজে, চূড়ায় নাকি এই দুইয়ের মাঝে অন্য কোথাও আছে।

দুর্বল নিউক্লিয়ার বল (Weak force): চার প্রকার মৌলিক বলের মধ্যে দ্বিতীয় দুর্বল বল। এটি মহাকর্ষের চেয়ে শক্তিশালী। এরও পাল্লা খুব ছোট। এটি যে কোনো বস্তু কণাকে আকর্ষণ করে, তবে বলবাহী কণিকাকে আকর্ষণ করে না। (*একে সংক্ষেপে বলা হয় দুর্বল বল।)

নিউক্লিয়ার ফিউসান (Nuclear fusion): যে প্রক্রিয়ার মাধ্যমে দুটি পরমাণুর নিউক্লিয়াস সংঘর্ষের মাধ্যমে যুক্ত হয়ে একটিমাত্র ভারী নিউক্লিয়াস গঠন করে।

নিউক্লিয়াস (Nucleus): পরমাণুর কেন্দ্রীয় অংশ। এতে সবল বলের মাধ্যমে প্রোটন ও নিউট্রন যুক্ত থাকে।

নিউট্রন (Neutron): অনেকটা প্রোটনের মতোই একটি কণিকা, তবে এতে কোনো চার্জ নেই। পরমাণুর নিউক্লিয়াসের অর্ধেক কণিকা এই নিউট্রন দিয়ে পূরণ হয়।

নিউট্রন নক্ষত্র (Neutron star): সুপারনোভা বিস্ফোরণের পরে অনেক সময় যে শীতল অংশ বাকি থেকে যায়। এটি ঘটে যখন কোনো নক্ষত্রের কেন্দ্রভাগের বস্তু গুটিয়ে নিউট্রনের ঘন ভরের বস্তুতে পরিণত হয়। (*এর মহাকর্ষ এতটা শক্তিশালী যে ইলেকট্রন ও প্রোটন এক হয়ে গিয়ে পুরোটা চার্জহীন নিউট্রনে পরিণত হয়।) আরো দেখুন, নিউট্রন।

নিউট্রিনো (Neutrino): একটি অসম্ভব হালকা কণিকা, যা শুধু মহাকর্ষ এবং দুর্বল নিউক্লিয়ার বল দ্বারা প্রভাবিত হয়।

জিওডেসিক (Geodesic): দুটি বিন্দুর মধ্যে সর্বনিম্ন (বা সর্বোচ্চ) পথ। (*গোলকের মতো ধনাত্নক বক্রতার ক্ষেত্রে এটি হবে সর্বনিম্ন পথ। আর ঘোড়ার জিনের মত আকৃতির বস্তুর ঋণাত্মক বক্রতার ক্ষেত্রে এটি হবে সর্বোচ্চ দূরত্ব)

ত্বরণ (Acceleration): যে হারে (সময়ের পরিবর্তনের সাথে) কোনো বস্তুর বেগ পরিবর্তন হয়।

দ্বৈততা (duality):  আপাত দৃষ্টিতে আলাদা হলেও একই ফলাফল প্রদান করা দুটো থিওরির মধ্যে সম্পর্ক।  আরো দেখুন, কণা/ তরঙ্গ দ্বৈততা।

পজিট্রন (Positron): ইলেকট্রনের ধনাত্মক চার্জধারী প্রতিকণিকা। আরো দেখুনঃ প্রতিকণিকা।

পরম শূন্য তাপমাত্রা (Absolute zero temperature): সর্বনিম্ন সম্ভাব্য সেই তাপমাত্রা, যাতে বস্তুর কোনো তাপ শক্তি থাকে না।

পরমাণু (Atom): সাধারণ বস্তুর মৌলিক একক। এতে একটি ক্ষুদ্র নিউক্লিয়াসের (প্রোটন ও নিউট্রন দিয়ে তৈরি) চারপাশে ইলেকট্রনরা কক্ষপথে ঘুরতে থাকে।

প্ল্যাঙ্কের কোয়ান্টাম নীতি (Planck’s quantum principle): এই ধারণা যে, আলো (বা অন্য যে কোনো প্রচলিত তরঙ্গ) শুধু বিচ্ছিন্ন কোয়ান্টা আকারে নির্গত হয়, যার শক্তি এর কম্পাঙ্কের সমানুপাতিক এবং তরঙ্গদৈর্ঘ্যের ব্যস্তানুপাতিক। আরো দেখুনঃ সমানুপাতিক ও ব্যস্তানুপাতিক।

প্রতিকণিকা (Antiparticle): বস্তুর প্রতেকটি কণিকার বিপরীতে একটি প্রতিকণিকা আছে (*যার চার্জ ছাড়া আর সব ধর্ম কণিকার মতোই। যেমন ইলেকট্রনের প্রতিকণিকা পজিট্রন, যার চার্জ +১।)। কণিকা ও প্রতিকণিকার মধ্যে সংঘর্ষ হলে দুটিই নিশ্চিহ্ন হয়ে যায়, বিনিময়ে পাওয়া যায় শক্তি।

প্রান্থীনতার শর্ত (No-boundary condition): এই ধারণা যে, মহাবিশ্বের সাইজ সসীম কিন্তু এর কোনো সীমানা বা প্রান্ত নেই।

প্রোটন (Proton): প্রায় নিউট্রনের মতোই একটি কণিকা। কিন্তু এর রয়েছে ধনাত্মক চার্জ। পরমাণুর নিউক্লিয়াসের কণিকাদের প্রায় অর্ধেকসংখ্যক এরা।

ফোটন (Photon): আলোর একটি কোয়ান্টাম। আরো দেখুনঃ কোয়ান্টাম।

বর্ণালী (Spectrum): একটি তরঙ্গের উপাদান কম্পাঙ্কগুলো। সৌরবর্ণালীর দৃশ্যমান অংশ রংধনুতে দেখা যায়।

বিগ ব্যাঙ (Big bang): মহাবিশ্বের শুরুতে যে সিঙ্গুলারিটি ছিল। আরো দেখুন, সিঙ্গুলারিটি।

বিশেষ আপেক্ষিক তত্ত্ব (Special relativity): মহাকর্ষের অনুপস্থিতিতে যে কোনো বেগে গতিশীল সকল পর্যেবেক্ষকের কাছে বিজ্ঞানের সূত্রগুলো একই থাকবে- এই নীতির ভিত্তিতে তৈরি আইনস্টাইনের থিওরি। (*কাল দীর্ঘায়ন, দৈর্ঘ সঙ্কোচন, ভর-শক্তি সমতুল্যতা ইত্যাদি এই থিওরির ফসল।)। আরো দেখুন, সার্বিক আপেক্ষিক তত্ত্ব।

ব্যস্তানুপাতিক (inversely proportional): X, Y এর ব্যস্তানুপাতিক হলে এর অর্থ হচ্ছে Y কে কোনো সংখ্যা দ্বারা গুণ করলে X কে সেই সংখ্যা দ্বারা ভাগ দেওয়া হচ্ছে। (*অর্থ্যাৎ, Y যত গুণ বাড়বে, X তত গুণ কমে যাবে। যেমন Y দ্বিগুণ হলে X হয়ে যাবে অর্ধেক। Y তিন গুণ হলে X হবে তিন ভাগের এক ভাগ। তবে যদি বলা হয় X, Y এর বর্গের ব্যস্তানুপাতিক, তাহলে Y দ্বিগুণ হলে X হবে চার ভাগের এক ভাগ।) আরো দেখুন, সমানুপাতিক।

ব্ল্যাক হোল (Black hole): স্থান- কালের এমন অঞ্চল যেখানে মহাকর্ষ এত শক্তিশালী যে এখান থেকে কোনো কিছুই বের হয়ে আসতে পারে না, এমনকি আলোও না। (*বাংলা নাম কৃষ্ণগহ্বর বা কৃষ্ণবিবর)

ভর (Mass): কোনো বস্তুতে উপস্থিত পদার্থের পরিমাণ; বস্তুর জড়তা বা ত্বরণের প্রতি বাধা।

ভার্চুয়াল কণিকা (Virtual particle): যে কণবিকাদেরকে সরাসরি দেখা যায় না, কিন্তু পরিমাপযোগ্য প্রতিক্রিয়া থাকে।

মহাজাগতিক ধ্রুবক (Cosmological constant): স্থান- কালের সহজাত ধর্মই হচ্ছে প্রসারিত হওয়া- এমন ব্যাখ্যা দেবার জন্যে আইনস্টাইনের উদ্ভাবিত গাণিতিক ধ্রুবক। (*পরে দেখা গিয়েছিল এই ধ্রুবক আনা ছিল ভুল সিদ্ধান্ত। কিন্তু এখন আবার এর প্রয়োজন আছে বলে মনে হচ্ছে)।

মাইক্রোওয়েভ পটভূমি বিকিরণ (Microwave background radiation): আদি উত্তপ্ত মহাবিশ্ব থেকে নির্গত বিকিরণ। বর্তমানে এর এত বেশি লাল সরণ হয়েছে যে একে আর আলো হিসেবে দেখা যায় না, পাওয়া যায় মাইক্রোওয়েভ হিসেবে। মাইক্রোওয়েভ হল কয়েক সেন্টিমিটার তরঙ্গদৈর্ঘ্যের বেতার তরঙ্গ। আরো দেখুন, লাল সরণ।

মৌলিক কণিকা (Elementary particle): এমন কণিকা যাকে আর ভাঙা যায় না বলে বিশ্বাস করা হয়।

রেডার (Radar): বেতার তরঙ্গের মাধ্যমে বস্তুর অবস্থান নির্ণয়ের যন্ত্র। যন্ত্র থেকে প্রেরিত সঙ্কেত বস্তুতে পৌঁছে প্রতিফলিত হয়ে ফিরে আসতে যে সময় লাগে তা কাজে লাগিয়ে দূরত্ব বের করা হয়।

লাল বা লোহিত সরণ (Red shift): ডপলার ক্রিয়ার কারণে আমাদের কাছ থেকে দূরে সরে যাওয়া নক্ষত্রের আলোকে লাল দেখা।

সবল নিউক্লিয়ার বল (Strong force): চার প্রকারের মৌলিক বলের মধ্যে সবচেয়ে শক্তিশালী বল। তবে এর পাল্লা সবচেয়ে ছোট (* বেশি দূর পর্যন্ত এর প্রভাব কাজ করে না)। এটি কোয়ার্কদেরকে যুক্ত করে প্রোটন ও নিউট্রন এবং প্রোটন ও নিউট্রনকে যুক্ত করে পরমাণু গঠন করে।  একে সংক্ষেপে সবল বলও বলা হয়।

সমানুপাতিক (Proportional): X, Y এর সমানুপাতিক হলে এর অর্থ হচ্ছে Y কে কোনো সংখ্যা দ্বারা গুণ করা হলে X কেও সেই সংখ্যা দ্বারা গুণ করা হবে (* এর অর্থ হবে Y যে হারে বাড়বে Xও সেই হারে বাড়বে। তবে যদি বলা হয় X, Y এর বর্গের সমানুপাতিক, তবে Y দ্বিগুণ হলে X চার গুণ হবে; Y তিন গুণ হলে X নয় গুণ হবে ইত্যাদি।) আরো দেখুন, ব্যস্তানুপাতিক।

সাধারণ বা সার্বিক আপেক্ষিক তত্ত্ব (General relativity): যে কোনো গতিতে চলা পর্যবেক্ষকের কাছে বিজ্ঞানের সূত্রগুলো একই হবে- এই ধারণার ভিত্তিতে তৈরি আইনস্টাইনের থিওরি। এই থিওরি মহাকর্ষকে চতুর্মাত্রিক স্থান- কালের সাহায্যে প্রকাশ করে।

সিঙ্গুলারিটি (Singularity): স্থান- কালের এমন বিন্দু যেখানে স্থান- কালের বক্রতা (অথবা অন্য কোনো বস্তুগত রাশি) অসীম হয়। (*বাংলায় একে অনন্যতাও বলা হয়।)

স্ট্রিং থিওরি (String theory): পদার্থবিদ্যার সেই থিওরি যাতে বিভিন্ন কণিকাকে স্ট্রিং (* সুতা, দড়ি ইত্যাদি) এর কম্পন মনে করা হয়। স্ট্রিং এর শুধু দৈর্ঘ্য আছে, অন্য কোনো মাত্রা (উচ্চতা বা প্রস্থ) নেই।

স্থানাংক (Coordinates): স্থান ও কালের মধ্যে কোনো বিন্দুর অবস্থান প্রকাশ করতে যে সংখ্যাগুলো প্রয়োজন।

স্থান- কাল (Space-time): চতুর্মাত্রিক স্থান, যার বিন্দুগুলোকে ঘটনা বলা হয়।

স্থানিক মাত্রা (Spatial dimension): সময় ছাড়া অন্য তিন মাত্রার যে কোনোটি। 
Category: articles
[নোটঃ পরভাষাগুলো সাজানোর ক্ষেত্রে বাংলা একাডেমির বর্ণানুক্রম মেনে চলার চেষ্টা করা হয়েছে]

অনিশ্চয়তা নীতি (Uncertainty principle): হাইজেনবার্গের প্রদান করা এই নীতি যে, কোনো কণিকার অবস্থান ও বেগ একইসাথে নিশ্চিত করে জানা সম্ভব নয়। এর একটি যত বেশি নির্ভুলভাবে পরিমাপ করা হবে, অপরটি সম্পর্কে পাওয়া তথ্য ততই অনিশ্চিত হয়ে পড়বে।

আইন্সটাইন- রোজেন সেতু (Einstein-Rosen bridge): স্থান- কালের একটি সরু টিউব, যা দুটি ব্ল্যাক হোলকে যুক্ত করে। আরো দেখুন, ওয়ার্মহোল

আলোকবর্ষ (light-year): আলো এক বছরে যে দূরত্ব অতিক্রম করে। (* মনে রাখতে এটি, আলোক-সেকেন্ড এবং এই জাতীয় এককগুলো সময়ের নয়, দূরত্বের একক)

আলোক-সেকেন্ড (Light-second): আলো এক সেকেন্ডে যে দূরত্ব অতিক্রম করে।

অ্যানথ্রোপিক নীতি (Anthropic principle): আমরা মহাবিশ্বকে এখন যেমন দেখছি এর এমন হওয়ার পেছনে কারণ হচ্ছে, এটি যদি এমন না হত তাহলে একে পর্যবেক্ষণ করার মতো এখানে থাকতামই না।

ইলেকট্রন (Electron): নিউক্লিয়াসের চারদিকে ঘুর্ণনরত নেগেটিভ বা ঋণাত্মক চার্জধারী কণিকা।

ইলেকট্রিক চার্জ বা তড়িৎ আধান (Electric charge): কণিকার এমন ধর্ম যার মাধ্যমে এটি বিপরীত চার্জধারী অন্য কণিকাকে আকর্ষণ করে এবং একই রকম চার্জধারী কণিকাকে বিকর্ষণ করে।

ইলেকট্রোউইক ইউনিফিকেশান এনার্জি (Electroweak unification energy): শক্তির যে পরিমাণকে (১০০ গিগা ইলেকট্রোভোল্ট) ছাড়িয়ে গেলে তড়িচ্চুম্বকীয় বল এবং দুর্বল নিউক্লিয়ার বলের মধ্যে কোনো পার্থক্য থাকে না।

ওজোন (Weight): মহাকর্ষীয় (বা অভিকর্ষীয়) ক্ষেত্র দ্বারা কোনো বস্তুর উপর প্রযুক্ত বল। এটি ভরের সমানুপাতিক কিন্তু সমান নয়। (* আমরা সাধারণত যাকে ওজোন বলি, সেটি আসলে ভর। ভরের সাথে অভিকর্ষীয় ত্বরণ গুণ করলে ওজোন পাওয়া যায়)। আরো দেখুন, অভিকর্ষীয় ত্বরণ।

ওয়ার্মহোল (Wormhole): মহাবিশ্বের দূরবর্তী দুটি অঞ্চলের সংযোগ প্রদানকারী একটি পাতলা টিউব বা সুড়ঙ্গ। ওয়ার্মহোলের অপর প্রান্তে সমান্তরাল বা শিশু মহাবিশ্ব থাকতে পারে, যার মাধ্যমে সময় ভ্রমণ সম্ভব হতে পারে।
মহাবিশ্বের দূরবর্তী দুটি অঞ্চলের সংযোগ প্রদানকারী একটি পাতলা টিউব বা সুড়ঙ্গকে ওয়ার্মহোল বলা হয়
কণা ত্বরকযন্ত্র (Particle accelerator): যে মেশিনের সাহায্যে ইলেকট্রোম্যাগনেট বা তড়িচ্চুম্বক ব্যবহার করে বেশি শক্তি দিয়ে দিয়ে গতিশীল চার্জধারী কণিকাদের বেগ বৃদ্ধি করা যায়।

কণা- তরঙ্গ দ্বৈততা (Wave/particle duality): কোয়ান্টাম মেকানিক্সের এই নীতি যে, কণিকা ও তরঙ্গের মধ্যে কোনো পার্থক্য নেই। কোনো সময় কণিকা আচরণ করে তরঙ্গের মতো, আবার কখনো তরঙ্গ কণিকার মতো আচরণ করে।

কসমোলজি বা মহাবিশ্বতত্ত্ব (Cosmology): সামগ্রিকভাবে মহাবিশ্ব নিয়ে আলোচনা করা হয়ে যে শাস্রে।

কোয়ান্টাম (Quantum): কোনো পারমাণবিক প্রতিক্রিয়ায় অংশ নেওয়া বস্তুর সর্বনিম্ন পরিমাণ।

কোয়ান্টাম মেকানিক্স (Quantum mechanics): প্ল্যাঙ্কের কোয়ান্টাম নীতি ও হাইজেনবার্গের অনিশ্চয়তা নীতি থেকে প্রস্তুত করা থিওরি।

কোয়ার্ক (Quark): একটি চার্জধারী মৌলিক কণিকা, যা সবল নিউক্লিয়ার বল অনুভব করে। প্রোটন ও নিউট্রন দুটি কণিকাই তিনটি করে কোয়ার্ক দ্বারা গঠিত।

কম্পাঙ্ক বা ফ্রিকুয়েন্সি (Frequency): কোনো তরঙ্গ প্রতি সেকেন্ডে যতগুলো চক্র বা কম্পন সম্পন্ন করে।

ক্ষেত্র (Field): এমন কিছু যা স্থান- কালের উল্লেখযোগ্য অংশে বিস্তৃত । এটি কণিকার বিপরীত, যা নির্দিষ্ট কোনো সময়ে শুধু একটি বিন্দুতেই অবস্থান করে।

গামা রশ্মি (Gamma rays): খুব ক্ষুদ্র তরঙ্গদৈর্ঘ্যের তড়িচ্চুম্বকীয় রশ্মি। তেজস্ক্রিয় বিকিরণ বা মৌলিক কণিকাদের সংঘর্ষের ফলে এটি উৎপন্ন হয়। আরো দেখুন, তেজস্ক্রিয়তা।

গ্র্যান্ড ইউনিফায়েড থিওরি বা মহা-সমন্বয় তত্ত্ব (Grand unified theory বা GUT): যে থিওরি তড়িচ্চুম্বকীয় এবং সবল ও দুর্বল নিউক্লিয়ার বলকে একীভূত করে।

ঘটনা (Event): নির্দিষ্ট স্থান ও সময়বিশিষ্ট স্থান- কালের উপরস্থ কোনো বিন্দু।

ঘটনা দিগন্ত (Event horizo): ব্ল্যাক হোলের সীমানা (*ব্ল্যাক হোলের চারপাশের যে অঞ্চলের বাইরে আলো আসতে পারে না)।

চৌম্বক ক্ষেত্র বা ম্যাগনেটিক ফিল্ড (Magnetic field): চৌম্বক বলের জন্যে দায়ী ক্ষেত্র। তড়িৎ ক্ষেত্রের (electric field) সাথে সমন্বিত হয়ে এটি এখন তড়িচ্চুম্বকীয় ক্ষেত্রের অংশ।

ডার্ক ম্যাটার (Dark matter): গ্যালাক্সি, গ্যালাক্সিপুঞ্জ ও এদের মাঝে অবস্থিত সেসব বস্তু যাদেরকে এখনো সরাসরি দেখা সম্ভব হয়নি। কিন্তু মহাকর্ষীয় প্রভাবের কারণে এদের উপস্থিতি টের পাওয়া যায়। মহাবিশ্বের অন্তত ৯০ ভাগ ভরই ডার্ক ম্যাটার।

তড়িচ্চুম্বকীয় বল (Electromagnetic force): ইলেকট্রিক চার্জধারী কণিকাদের মধ্যে যে বল কাজ করে। চার প্রকার মৌলিক বলের মধ্যে শক্তিতে দ্বিতীয়।

তরঙ্গদৈর্ঘ্য (Wavelength): কোনো তরঙ্গের পাশাপাশি অবস্থিত দুটি চূড়া বা খাঁজের মধ্যে দূরত্ব। [চিত্র দেখুন]

তেজস্ক্রিয়তা (Radioactivity): কিছু কিছু পরমাণু নিজেই নিজেই অন্য পরমাণুতে পরিণত হবার যে প্রক্রিয়া।

দশা (Phase): নির্দিষ্ট সময়ে কোনো তরঙ্গের অবস্থান। এর মাধ্যমে বোঝা যায় যে তরঙ্গের অবস্থান কি খাঁজে, চূড়ায় নাকি এই দুইয়ের মাঝে অন্য কোথাও আছে।

দুর্বল নিউক্লিয়ার বল (Weak force): চার প্রকার মৌলিক বলের মধ্যে দ্বিতীয় দুর্বল বল। এটি মহাকর্ষের চেয়ে শক্তিশালী। এরও পাল্লা খুব ছোট। এটি যে কোনো বস্তু কণাকে আকর্ষণ করে, তবে বলবাহী কণিকাকে আকর্ষণ করে না। (*একে সংক্ষেপে বলা হয় দুর্বল বল।)

নিউক্লিয়ার ফিউসান (Nuclear fusion): যে প্রক্রিয়ার মাধ্যমে দুটি পরমাণুর নিউক্লিয়াস সংঘর্ষের মাধ্যমে যুক্ত হয়ে একটিমাত্র ভারী নিউক্লিয়াস গঠন করে।

নিউক্লিয়াস (Nucleus): পরমাণুর কেন্দ্রীয় অংশ। এতে সবল বলের মাধ্যমে প্রোটন ও নিউট্রন যুক্ত থাকে।

নিউট্রন (Neutron): অনেকটা প্রোটনের মতোই একটি কণিকা, তবে এতে কোনো চার্জ নেই। পরমাণুর নিউক্লিয়াসের অর্ধেক কণিকা এই নিউট্রন দিয়ে পূরণ হয়।

নিউট্রন নক্ষত্র (Neutron star): সুপারনোভা বিস্ফোরণের পরে অনেক সময় যে শীতল অংশ বাকি থেকে যায়। এটি ঘটে যখন কোনো নক্ষত্রের কেন্দ্রভাগের বস্তু গুটিয়ে নিউট্রনের ঘন ভরের বস্তুতে পরিণত হয়। (*এর মহাকর্ষ এতটা শক্তিশালী যে ইলেকট্রন ও প্রোটন এক হয়ে গিয়ে পুরোটা চার্জহীন নিউট্রনে পরিণত হয়।) আরো দেখুন, নিউট্রন।

নিউট্রিনো (Neutrino): একটি অসম্ভব হালকা কণিকা, যা শুধু মহাকর্ষ এবং দুর্বল নিউক্লিয়ার বল দ্বারা প্রভাবিত হয়।

জিওডেসিক (Geodesic): দুটি বিন্দুর মধ্যে সর্বনিম্ন (বা সর্বোচ্চ) পথ। (*গোলকের মতো ধনাত্নক বক্রতার ক্ষেত্রে এটি হবে সর্বনিম্ন পথ। আর ঘোড়ার জিনের মত আকৃতির বস্তুর ঋণাত্মক বক্রতার ক্ষেত্রে এটি হবে সর্বোচ্চ দূরত্ব)

ত্বরণ (Acceleration): যে হারে (সময়ের পরিবর্তনের সাথে) কোনো বস্তুর বেগ পরিবর্তন হয়।

দ্বৈততা (duality):  আপাত দৃষ্টিতে আলাদা হলেও একই ফলাফল প্রদান করা দুটো থিওরির মধ্যে সম্পর্ক।  আরো দেখুন, কণা/ তরঙ্গ দ্বৈততা।

পজিট্রন (Positron): ইলেকট্রনের ধনাত্মক চার্জধারী প্রতিকণিকা। আরো দেখুনঃ প্রতিকণিকা।

পরম শূন্য তাপমাত্রা (Absolute zero temperature): সর্বনিম্ন সম্ভাব্য সেই তাপমাত্রা, যাতে বস্তুর কোনো তাপ শক্তি থাকে না।

পরমাণু (Atom): সাধারণ বস্তুর মৌলিক একক। এতে একটি ক্ষুদ্র নিউক্লিয়াসের (প্রোটন ও নিউট্রন দিয়ে তৈরি) চারপাশে ইলেকট্রনরা কক্ষপথে ঘুরতে থাকে।

প্ল্যাঙ্কের কোয়ান্টাম নীতি (Planck’s quantum principle): এই ধারণা যে, আলো (বা অন্য যে কোনো প্রচলিত তরঙ্গ) শুধু বিচ্ছিন্ন কোয়ান্টা আকারে নির্গত হয়, যার শক্তি এর কম্পাঙ্কের সমানুপাতিক এবং তরঙ্গদৈর্ঘ্যের ব্যস্তানুপাতিক। আরো দেখুনঃ সমানুপাতিক ও ব্যস্তানুপাতিক।

প্রতিকণিকা (Antiparticle): বস্তুর প্রতেকটি কণিকার বিপরীতে একটি প্রতিকণিকা আছে (*যার চার্জ ছাড়া আর সব ধর্ম কণিকার মতোই। যেমন ইলেকট্রনের প্রতিকণিকা পজিট্রন, যার চার্জ +১।)। কণিকা ও প্রতিকণিকার মধ্যে সংঘর্ষ হলে দুটিই নিশ্চিহ্ন হয়ে যায়, বিনিময়ে পাওয়া যায় শক্তি।

প্রান্থীনতার শর্ত (No-boundary condition): এই ধারণা যে, মহাবিশ্বের সাইজ সসীম কিন্তু এর কোনো সীমানা বা প্রান্ত নেই।

প্রোটন (Proton): প্রায় নিউট্রনের মতোই একটি কণিকা। কিন্তু এর রয়েছে ধনাত্মক চার্জ। পরমাণুর নিউক্লিয়াসের কণিকাদের প্রায় অর্ধেকসংখ্যক এরা।

ফোটন (Photon): আলোর একটি কোয়ান্টাম। আরো দেখুনঃ কোয়ান্টাম।

বর্ণালী (Spectrum): একটি তরঙ্গের উপাদান কম্পাঙ্কগুলো। সৌরবর্ণালীর দৃশ্যমান অংশ রংধনুতে দেখা যায়।

বিগ ব্যাঙ (Big bang): মহাবিশ্বের শুরুতে যে সিঙ্গুলারিটি ছিল। আরো দেখুন, সিঙ্গুলারিটি।

বিশেষ আপেক্ষিক তত্ত্ব (Special relativity): মহাকর্ষের অনুপস্থিতিতে যে কোনো বেগে গতিশীল সকল পর্যেবেক্ষকের কাছে বিজ্ঞানের সূত্রগুলো একই থাকবে- এই নীতির ভিত্তিতে তৈরি আইনস্টাইনের থিওরি। (*কাল দীর্ঘায়ন, দৈর্ঘ সঙ্কোচন, ভর-শক্তি সমতুল্যতা ইত্যাদি এই থিওরির ফসল।)। আরো দেখুন, সার্বিক আপেক্ষিক তত্ত্ব।

ব্যস্তানুপাতিক (inversely proportional): X, Y এর ব্যস্তানুপাতিক হলে এর অর্থ হচ্ছে Y কে কোনো সংখ্যা দ্বারা গুণ করলে X কে সেই সংখ্যা দ্বারা ভাগ দেওয়া হচ্ছে। (*অর্থ্যাৎ, Y যত গুণ বাড়বে, X তত গুণ কমে যাবে। যেমন Y দ্বিগুণ হলে X হয়ে যাবে অর্ধেক। Y তিন গুণ হলে X হবে তিন ভাগের এক ভাগ। তবে যদি বলা হয় X, Y এর বর্গের ব্যস্তানুপাতিক, তাহলে Y দ্বিগুণ হলে X হবে চার ভাগের এক ভাগ।) আরো দেখুন, সমানুপাতিক।

ব্ল্যাক হোল (Black hole): স্থান- কালের এমন অঞ্চল যেখানে মহাকর্ষ এত শক্তিশালী যে এখান থেকে কোনো কিছুই বের হয়ে আসতে পারে না, এমনকি আলোও না। (*বাংলা নাম কৃষ্ণগহ্বর বা কৃষ্ণবিবর)

ভর (Mass): কোনো বস্তুতে উপস্থিত পদার্থের পরিমাণ; বস্তুর জড়তা বা ত্বরণের প্রতি বাধা।

ভার্চুয়াল কণিকা (Virtual particle): যে কণবিকাদেরকে সরাসরি দেখা যায় না, কিন্তু পরিমাপযোগ্য প্রতিক্রিয়া থাকে।

মহাজাগতিক ধ্রুবক (Cosmological constant): স্থান- কালের সহজাত ধর্মই হচ্ছে প্রসারিত হওয়া- এমন ব্যাখ্যা দেবার জন্যে আইনস্টাইনের উদ্ভাবিত গাণিতিক ধ্রুবক। (*পরে দেখা গিয়েছিল এই ধ্রুবক আনা ছিল ভুল সিদ্ধান্ত। কিন্তু এখন আবার এর প্রয়োজন আছে বলে মনে হচ্ছে)।

মাইক্রোওয়েভ পটভূমি বিকিরণ (Microwave background radiation): আদি উত্তপ্ত মহাবিশ্ব থেকে নির্গত বিকিরণ। বর্তমানে এর এত বেশি লাল সরণ হয়েছে যে একে আর আলো হিসেবে দেখা যায় না, পাওয়া যায় মাইক্রোওয়েভ হিসেবে। মাইক্রোওয়েভ হল কয়েক সেন্টিমিটার তরঙ্গদৈর্ঘ্যের বেতার তরঙ্গ। আরো দেখুন, লাল সরণ।

মৌলিক কণিকা (Elementary particle): এমন কণিকা যাকে আর ভাঙা যায় না বলে বিশ্বাস করা হয়।

রেডার (Radar): বেতার তরঙ্গের মাধ্যমে বস্তুর অবস্থান নির্ণয়ের যন্ত্র। যন্ত্র থেকে প্রেরিত সঙ্কেত বস্তুতে পৌঁছে প্রতিফলিত হয়ে ফিরে আসতে যে সময় লাগে তা কাজে লাগিয়ে দূরত্ব বের করা হয়।

লাল বা লোহিত সরণ (Red shift): ডপলার ক্রিয়ার কারণে আমাদের কাছ থেকে দূরে সরে যাওয়া নক্ষত্রের আলোকে লাল দেখা।

সবল নিউক্লিয়ার বল (Strong force): চার প্রকারের মৌলিক বলের মধ্যে সবচেয়ে শক্তিশালী বল। তবে এর পাল্লা সবচেয়ে ছোট (* বেশি দূর পর্যন্ত এর প্রভাব কাজ করে না)। এটি কোয়ার্কদেরকে যুক্ত করে প্রোটন ও নিউট্রন এবং প্রোটন ও নিউট্রনকে যুক্ত করে পরমাণু গঠন করে।  একে সংক্ষেপে সবল বলও বলা হয়।

সমানুপাতিক (Proportional): X, Y এর সমানুপাতিক হলে এর অর্থ হচ্ছে Y কে কোনো সংখ্যা দ্বারা গুণ করা হলে X কেও সেই সংখ্যা দ্বারা গুণ করা হবে (* এর অর্থ হবে Y যে হারে বাড়বে Xও সেই হারে বাড়বে। তবে যদি বলা হয় X, Y এর বর্গের সমানুপাতিক, তবে Y দ্বিগুণ হলে X চার গুণ হবে; Y তিন গুণ হলে X নয় গুণ হবে ইত্যাদি।) আরো দেখুন, ব্যস্তানুপাতিক।

সাধারণ বা সার্বিক আপেক্ষিক তত্ত্ব (General relativity): যে কোনো গতিতে চলা পর্যবেক্ষকের কাছে বিজ্ঞানের সূত্রগুলো একই হবে- এই ধারণার ভিত্তিতে তৈরি আইনস্টাইনের থিওরি। এই থিওরি মহাকর্ষকে চতুর্মাত্রিক স্থান- কালের সাহায্যে প্রকাশ করে।

সিঙ্গুলারিটি (Singularity): স্থান- কালের এমন বিন্দু যেখানে স্থান- কালের বক্রতা (অথবা অন্য কোনো বস্তুগত রাশি) অসীম হয়। (*বাংলায় একে অনন্যতাও বলা হয়।)

স্ট্রিং থিওরি (String theory): পদার্থবিদ্যার সেই থিওরি যাতে বিভিন্ন কণিকাকে স্ট্রিং (* সুতা, দড়ি ইত্যাদি) এর কম্পন মনে করা হয়। স্ট্রিং এর শুধু দৈর্ঘ্য আছে, অন্য কোনো মাত্রা (উচ্চতা বা প্রস্থ) নেই।

স্থানাংক (Coordinates): স্থান ও কালের মধ্যে কোনো বিন্দুর অবস্থান প্রকাশ করতে যে সংখ্যাগুলো প্রয়োজন।

স্থান- কাল (Space-time): চতুর্মাত্রিক স্থান, যার বিন্দুগুলোকে ঘটনা বলা হয়।

স্থানিক মাত্রা (Spatial dimension): সময় ছাড়া অন্য তিন মাত্রার যে কোনোটি। 
Category: articles

রবিবার, ৭ ফেব্রুয়ারী, ২০১৬





শীতের আকাশে উজ্জ্বল তারাদের আধিপত্য একটু বেশিই থাকে। রাতের আকাশের অন্যতম সহজে খুঁজে পাওয়া তারামণ্ডলী আদম সুরত। এর ইংরেজি নাম Orion এবং আরেকটি বাংলা নাম কালপুরুষ। এতেই আছে দুটি টপ টেনের মধ্যে থাকা উজ্জ্বল নক্ষত্র। একটি হচ্ছে উজ্জ্বলতার দৌড়ে সপ্তম রিগেল এবং অপরটি নবম স্থানে থাকা বিটলজুস (Betelgeuse) বা বাংলায় আর্দ্রা।

মজার ব্যাপার হচ্ছে, এই আদম সুরতই আপনাকে অন্য উজ্জ্বল তারকাগুলো চিনিয়ে দেবে।
আদমের কোমরের তিনটি তারাকে যোগ করে দক্ষিণে যেতে থাকলে পেয়ে যাবেন রাতের আকাশের উজ্জ্বলতম নক্ষত্র লুব্ধক (Sirius)।

অন্য দিকে তিনটি তারা যোগ করে উল্টো দিকে মানে উত্তরে গেলে পাবেন বৃষরাশির উজ্জ্বলতম নক্ষত্র আলডেবারান।

Category: articles

বৃহস্পতিবার, ৪ ফেব্রুয়ারী, ২০১৬

এক্স-রে (নীল) ও রেডিও (লাল) ডেটার সমন্বয়ে প্রস্তুত ছবি। ছবিটি বড় করে দেখতে এখানে ক্লিক করুন। 
ছবিতে দূর মহাকাশের একটি গ্যালাক্সির কেন্দ্রে অবস্থিত ব্ল্যাক হোলের ৩ লাখ আলোকবর্ষ ব্যাপী ছড়িয়ে পড়া নিক্ষিপ্ত কণার একটি বিশাল ফোয়ারা (jet) দেখা যাচ্ছে। 
পিকটর এ (Pictor A) নামক গ্যালাক্সির কেন্দ্রে থাকা ব্ল্যাক হোলের প্রভাবে সৃষ্ট এই ফোয়ারার ছবিটি নাসা গত ২ ফেব্রুয়ারি ২০১৬ তারিখে প্রকাশ করেছে। গ্যালাক্সিটি পৃথিবী থেকে ৫০ কোটি আলোকবর্ষ দূরে অবস্থিত। ব্ল্যাক হোলে পতনশীল বস্তুর প্রভাবে বাইরের দিকে কণিকার বিশাল প্রবাহ বা ফোয়ারা নিক্ষিপ্ত হচ্ছে যা প্রায় আলোর বেগে ছড়িয়ে পড়ছে আন্তঃছায়াপথীয় (Intergalactic) স্থানে। ছবিটি পেতে নাসার চন্দ্রা এক্স-রে অবজারভেটরি ১৫ বছর ধরে কাজ করে গিয়েছে। চন্দ্রার এক্স-রে ডেটার (নীল) সাথে অস্ট্রেলিয়া টেলিস্কোপ কমপ্যাক্ট অ্যারে এর রেডিও ডেটা (লাল) সমন্বয় করে প্রস্তুত করা হয় ছবিখানা। 
পিকটর এ গ্যালাক্সির কেন্দ্র থেকে এই ফোয়ারা অবিরত ছড়িয়ে পড়ছে ৩ লাখ আলোকবর্ষ পর্যন্ত। উল্লেখ্য, আমাদের মিল্কিওয়ে গ্যালাক্সিরই ব্যাস মাত্র ১ লাখ আলোকবর্ষ। 
গবেষকরা বলছেন, ছবির ডান দিকে যেমন একটি ফোয়ারা দেখা যাচ্ছে, তেমনি এর বিপরীত দিকে আরেকটি ফোয়ারা কাজ করছে, যাকে বলা হচ্ছে প্রতি-ফোয়ারা (counterjet)। এর আগেও প্রতি ফোয়ারার অস্তিত্ব সম্পর্কে ধারণা করা হয়েছিল। তবে, এবারে এর নিশ্চিত প্রমাণ পাওয়া গেল। পৃথিবী থেকে উল্টো দিকে অবস্থিত হওয়াতে সম্ভবত প্রতি-ফোয়ারাকে অনুজ্জ্বল দেখাচ্ছে। 
ছবিতে আরো দেখা যাচ্ছে রেডিও লোব, যেখানে ফোয়ায়ার ধাক্কায় পাশ্ববর্তী গ্যাসে শক ওয়েভজনিত হটস্পট তৈরি হচ্ছে। ফোয়ারার মাথায় অবস্থিত এই হটস্পট অনেকটা সুপারসনিক বিমানের সনিক বুমের মত। 
চন্দ্রার ছবিতে দেখা ফোয়ারা ও প্রতি-ফোয়ারা সম্ভবত চৌম্বকক্ষেত্র রেখার চারপাশে ঘূর্ণনরত ইলেকট্রনের প্রভাবে তৈরি হচ্ছে। এই প্রক্রিয়াটির নাম সিনক্রোট্রন এমিসন (synchrotron emission)। এই ক্ষেত্রে বাইরের দিক নির্গত ইলেকট্রনকে অবশ্যই প্রতি মুহূর্তে বেগ বৃদ্ধি করতে হয়। এটা কিভাবে ঘটে তা এখনো বিজ্ঞানীদের ভালো জানা নেই। এই ফলাফলগুলোর বিবরণ দিয়ে একটি পেপার রয়েল অ্যাস্ট্রোনমিক্যাল সোসাইটির মাসিক প্রকাশনায় স্থান পাচ্ছে।
সূত্রঃ
১। Earth Sky
Category: articles
প্লুটো গ্রহের আবিষ্কারক কে? বামন গ্রহটির আবিষ্কারক আমেরিকান জ্যোতির্বিদ ক্লাইড টমবাউ। আজকের দিনটি তাঁর জন্মের ১১০ জন্মবার্ষিকী।
১৯২৮ সালে পারিবারিক খামারে বাসায় নির্মিত টেলিস্কোপের পাশে দাঁড়িয়ে প্লুটোর আবিষ্কারক ক্লাইড টমবাউ। 

টমবাউ বড় হন ইলিনয়েস অঙ্গরাজ্যের একটি কৃষক পরিবারে। তিনিও কাজ করতেন খামারেই। শিলাঝড়ের (Hailstorm) কবলে পড়ে তাঁর পরিবারের ফসল নষ্ট হয়ে গেলে আর্থিক অভাবে পড়ে যান তাঁরা। পড়াশোনার আশা ছেড়ে দিতে হয়ে তাঁকে। কিন্তু জ্যোতির্বিদ হবার আশা কখনো মাটিতে পড়তে দেননি তিনি। জ্যোতির্বিদ্যার জন্যে প্রয়োজনীয় গাণিতিক দক্ষতা নিজে নিজেই হাসিল করলেন। শিখলেন জ্যামিতি এবং ত্রিকোণমিতি। তিনি বলেছেন, 
আপনি কি ভাবতে পারেন, বর্তমান সময়ে একটি কিশোর শুধু মজা পাবার জন্যে ত্রিকোণমিতি শিখতে পারে? আমি তাই করেছি।
বাসায় বানানো টেলিস্কোপ দিয়ে আকাশ দেখতেন তিনি। কিছু পরামর্শের আশায় অ্যারিজোনার লয়েল অবজারভেটরিতে নিজের আঁকা মঙ্গল ও বৃহস্পতি গ্রহের ড্রয়িং পাঠালে পরামর্শের বদলে পেয়ে যান চাকরির প্রস্তাব। ১৯২৯ সাল থেকে ১৯৪৫ সাল পর্যন্ত সেখানে তিনি পর্যবেক্ষকের ভূমিকা পালন করেন।
এখানে তাঁর প্রধান দায়িত্ব ছিল প্ল্যানেট এক্স খুঁজে বের করা। অবজারভেটরির প্রতিষ্ঠতা পারসিভাল লয়েলও গ্রহটিকে খুঁজছিলেন। এর আগে তিনি (লয়েল সাহেব) মঙ্গল গ্রহের খাল আবিষ্কার করে খ্যাতি অর্জন করেন। ১৯১৬ সালে লয়েল মারা গেলেও গ্রহটির অনুসন্ধানকার্য চলতে থাকে।
টমবাউ এর দায়িত্বই ছিল লয়েলের কাজটিকে চালু রাখা। এক বছর পর, ১৯৩০ সালের ১৮ ফেব্রুয়ারি তারিখে উদ্দেশ্য সফল হল। ক্লাইড টমবাউ পেয়ে গেলেন প্লুটোকে। কৃতিত্বের জন্যে টমাবাউ স্কলারশিপ পেলেন। পাশাপাশি পেলেন ইউনিভার্সিটিতে পড়ার সুযোগ। শেষ পর্যন্ত ১৯৩৯ সালে তিনি ফরমাল শিক্ষা সমাপ্ত করেন।
কিন্তু জ্যোতির্বিদগণ প্ল্যানেট এক্সকে খুঁজছিলেন কেন? উনবিংশ শতকের শুরুর দিকে জ্যোতির্বিদরা বিশ্বাস করতেন, কিছু একটা সপ্তম গ্রহ ইউরেনাসের কক্ষপথে নাক গলাচ্ছে। সেই সময় ইউরেনাসই ছিল সবচেয়ে বহিঃস্থ জানা গ্রহ।বোঝা গেল, ইউরেনাসের বাইরেও কেউ আছে। এর অবস্থানও নির্ণয় করা হল এবং অবশেষে ১৮৪৬ সালে পাওয়া গেল নেপচুন গ্রহ।
আরো পড়ুনঃ নেপচুন আবিষ্কারের কাহিনী

কিন্তু দেখা গেল নেপচুনের কক্ষপথও রহস্যময় আচরণ করছে। ফলে, জ্যোতির্বিদরা বিশ্বাস করতে বাধ্য হলেন, নেপচুনের বাইরেও আরেকটি অজানা গ্রহ আছে। এরই নাম দেওয়া হয় প্ল্যানেট এক্স। একে খুঁজতে গিয়েি বের হয়ে পড়ল প্লুটো। কিন্তু একে পাবার পরে দেখা গেল, নেপচুনের কক্ষপথের রহস্যময়তা ব্যখ্যা করার সাধ্য প্লুটোর নেই। এর ভর তুলনামূলকভাবে অতি সামান্য। পরে এর অন্য ব্যখ্যা পাওয়া গিয়েছিল।
নানা কারণে ২০০৬ সালে প্লুটো গ্রহের খাতা থেকে বাদ পড়ে গেল। পরিচিতি পেল বামন গ্রহ হিসেবে। বর্তমানে আমাদের সৌরজগতে আরো অনেক বস্তুই এই পরিচয় বহন করছে। এর মধ্যে উল্লেখযোগ্য হল হোমিয়া, মাকিমাকি, সেরেস ইত্যাদি।
কিন্তু প্ল্যানেট এক্সের কী হল? মজার ব্যাপার হল, ২০১৬ সালের শুরুতে ক্যালটেকের জ্যোতির্বিদরা ঘোষণা দিয়েছেন, প্লুটোর কক্ষপথের বাইরে আরেকটি বড় গ্রহ আছে যার ভর পৃথিবীর ১০ গুণ। ধারণা করা হচ্ছে, নেপচুন থেকে ২০ গুণ দূরে এর কক্ষপথ অবস্থিত এবং সূর্যকে একবার প্রদক্ষিণ করতে এর সময় লাগে ২০ হাজার বছর।

সূত্রঃ
১। Earth Sky
Category: articles

বুধবার, ৩ ফেব্রুয়ারী, ২০১৬

আজকে সহ আগামী দিনগুলোতে ভোরের আকাশে দেখা যাচ্ছে গ্রহদের। বুধ, শুক্র ও শনি ভোরের দিকে দেখা যাবে। তবে, অন্য দুটি গ্রহ- বৃহস্পতি ও মঙ্গল ভোরের অনেক আগেই হাজির হবে রাতের আকাশে।
বিস্তারিত দেখুন- ফেব্রুয়ারি মাসে গ্রহরা কে কোথায়
Category: articles

মঙ্গলবার, ২ ফেব্রুয়ারী, ২০১৬

এক সাথে পাঁচটি গ্রহ- বুধ, শুক্র, মঙ্গল, বৃহস্পতি ও শনি দেখার সবচেয়ে ভালো সুযোগ এ মাসের প্রথম সপ্তাহটি। গত মাসের ২০ তারিখে শুরু হওয়া এই সুযোগটি চলবে এ মাসেও (২০ তারিখ নাগাদ)। প্রথম সপ্তাহে এদের আশেপাশে চাঁদের অবস্থান রাতের আকাশের সৌন্দর্য্য আরো বাড়িয়েই তুলবে। চাঁদের সাথে মঙ্গলের দেখা ২ তারিখে, শনির ৪ তারিখে, শুক্রের ৬ তারিখে এবং বুধের সাথে দেখা ৭ তারিখে। চলুন বিস্তারিত দেখি!
ফেব্রুয়ারি মাসের ২ তারিখে গ্রহদের আপাত অবস্থান

বুধঃ
জানুয়ারির শেষের সপ্তাহে বুধ গ্রহ সূর্যোদয় থেকে দূরে সরে এসে অন্য দৃশ্যমান গ্রহদের মিছিলে যোগ দেয়। এ মাসের ৬, ৭ তারিখে এটি থাকবে চাঁদের খুব কাছে। মাসের ৭ তারিখের আশেপাশের দিনগুলো বুধ গ্রহ দেখার সেরা সময়। সূর্যের প্রায় ৮০ মিনিট আগেই এ সময়গুলোতে বুধ ভোরের পূবাকাশে তার অস্তিত্ব জানান দেবে। মাসের ১১ তারিখ থেকে ১৫ তারিখ এটি শুক্রের খুব কাছে থাকবে।
মার্চ মাসের ২৩ তারিখে এটি আবার চলে যাবে সন্ধ্যার আকাশে। উল্লেখ্য, এই গ্রহটিই সবচেয়ে বেশি ভোর ও সন্ধ্যার আকাশে আসা-যাওয়া করে।
বুধ ও শুকতারা


শুক্রঃ
এ মাসে শুক্রের অবস্থান অপর দুই গ্রহ বুধ ও শনির মাঝখানে। গত মাসেই শনি এর উপরে চলে এসেছিল। রাতের আকাশের জনপ্রিয় বস্তু শুকতারা এ মাসে দ্রুত সূর্যের কাছাকাছি হচ্ছে। মাসের শুরুতে এটি সূর্যের ২ ঘণ্টা আগে উদিত হলেও মাসের শেষের দিকে পূবাকাশে দেখা দিতে দিতে সূর্যোদয়ের এক ঘণ্টা বাকি থাকবে। মাসের ৬ তারিখে এটি থাকবে চাঁদের কাছে। মাসের ১১ থেকে ১৫ তারিখে এটি বুধের এত কাছে থাকবে যে দুজনকে এক সাথে বাইনোকুলারে দেখা যাবে।
চাঁদ, বুধ ও শুক্র

বৃহস্পতিঃ
ইদানিং রাতের আকাশে সবার আগে উপস্থিত হয় বৃহস্পতি। মধ্য রাতের আগেই শুভকাজটি সেরে ফেলে গ্রহরাজ। অন্য দিকে মাসের শেষের দিকে এটি সূর্যাস্তের একটু পরেই (প্রায় দেড় ঘণ্টা) পূর্ব আকাশে দেখা দেবে। এ মাসে মঙ্গল ও বৃহস্পতি দুজনেই বেশ উর্ধ্বাকাশে (দিগন্ত থেকে অনেক উপরে) থাকবে। ২৩ ও ২৪ ফেব্রুয়ারি তারিখে বৃহস্পতি থাকবে চাঁদের খুব কাছাকাছি।
 

মঙ্গলঃ
বৃহস্পতি বা শুক্রের মত এতটা উজ্জ্বল না হলেও এ মাসে মঙ্গলকে খুব সহজে দেখা যাবে। এ মাসে এর অবস্থান শনি ও বৃহস্পতির মাঝখানে। কন্যামণ্ডলীর উজ্জ্বলতম নক্ষত্র চিত্রা (Spica) এ মাসে এর কাছাকাছি থাকলেও মঙ্গলের লাল রঙ একে চিনতে সুবিধা করে দেবে। খালি চোখে অসুবিধা হলে বাইনোকুলার ঠিকই দুইয়ে দুইয়ে চার মিলিয়ে দেবে। এ বছরে আগস্টের সন্ধ্যার আকাশে মঙ্গল ও শনি খুব কাছাকাছি থাকবে। আগামী কয়েক মাস মঙ্গল ক্রমেই উজ্জ্বল হতে থাকবে এবং মে মাসে এটি উজ্জ্বলতার শীর্ষে পৌঁছে বৃহস্পতির সাথেও টেক্কা দেবে যেখানে শুক্রের পরে ২য় উজ্জ্বল গ্রহের তিলক বৃহস্পতির কপালে। 
চাঁদ ও মঙ্গল গ্রহ

শনিঃ
পুরো মাস জুড়ে শনি থাকবে ভোরের গ্রহ। মাসের শুরুতে এটি সূর্যোদয়ের ৪ ঘণ্টা ও মাসের শেষের দিকে ৫ ঘণ্টা আগে উদিত হবে। মাসের ৪ তারিখে চাঁদের সাথে অবস্থান একে খুঁজে পেতে ভূমিকা পালন করবে। এটিই সৌরজগতের সবচেয়ে দূরের বস্তু যা আমরা খালি চোখে দেখতে পাই। 
তো! দেখতে থাকুন! 
Category: articles

জ্যোতির্বিজ্ঞান পরিভাষা: জেনে নিন কোন শব্দের কী মানে

এখানে সংক্ষিপ্ত ব্যাখ্যাসহ জ্যোতির্বিদ্যায় প্রয়োজনীয় পরিভাষাগুলোর তালিকা দেওয়া হলো। সাজানো হয়েছে অক্ষরের ক্রমানুসারে। এই তালিকা নিয়মিত আপডেট...