স্ট্যান্ডার্ড মডেল হল বিজ্ঞানের ইতিহাসে সবচেয়ে সফল তত্ত্বগুলোর মাঝে একটি। অনেকে স্ট্যান্ডার্ড মডেলকে মৌলিক কণাদের বা বলবাহক কণাদের তালিকা মনে করলেও এটি আসলে এটি নিছকই তালিকা নয়, বরং একটি গাণিতিক সূত্র বা তত্ত্ব। চলুন জেনে নিই, অতি-পারমাণবিক কণাদের আচরণ ও মৌলিক বলগুলোর একীভূত কোয়ান্টাম তত্ত্ব গঠনে সফল এই তত্ত্বের জন্ম কীভাবে হল।
বর্তমান বিজ্ঞানীদের নিকট অন্যতম বড় একটা চ্যালেঞ্জ হল প্রকৃতির মৌলিক ৪ টি বলকে একীভূত করা। বিজ্ঞানীরা মনে করেন, এই মৌলিক বলগুলোকে একীভূত করা গেলে কসমোলজি বা সৃষ্টিতত্ত্ব, কণা-পদার্থবিজ্ঞান, জ্যোতির্পদার্থবিজ্ঞান ইত্যাদির হাজারো সমস্যার সমাধান হয়ে যাবে। সেই আদিকাল থেকেই সকল বলকে একই বলের বিভিন্ন রূপ হিসেবে দেখানোর চেষ্টা করা হয়েছে। কিন্তু, তখনও সকল মৌলিক বল আবিষ্কৃত না হওয়ায় বিজ্ঞানীরা মৌলিক বলগুলোকে একীভূত করতে পারেননি। পরবর্তীতে যখন সবল ও দুর্বল নিউক্লীয় বল আবিস্কৃত হয় তখন মৌলিক বলগুলোর একীভবনের জন্য অনেকগুলো তত্ত্ব গঠিত হয়। সুপারস্ট্রিং তত্ত্ব, লুপ কোয়ান্টাম গ্র্যাভিটি, ইয়াং-মিলস ফিল্ড এই তত্ত্বগুলোর মাঝে অন্যতম।
কোনো একটি বলকে ব্যাখ্যা করতে গেলে দরকার হয় ফিল্ড থিওরি বা ক্ষেত্র তত্ত্বের। যেমন মহাকর্ষ বলের জন্য যেমন মহাকর্ষ ক্ষেত্র রয়েছে। আইনস্টাইনের সফলতা ও নিউটনের ব্যর্থতার মূল কারণ হল আইনস্টাইন একটি মহাকর্ষ ক্ষেত্র তত্ত্ব গঠন করতে পেরেছিলেন, যা নিউটন পারেননি। দুর্বল ও সবল নিউক্লীয় বলের জন্য কোনো ক্ষেত্র তত্ত্ব যখন আবিষ্কৃত হয়নি, তখন ১৯৫৪ সালে এন. সি. ইয়াং ও তার ছাত্র আর. এল. মিলস একটি নতুন ক্ষেত্র তত্ত্ব দেন। এটি দুর্বল ও সবল নিউক্লীয় বলকে কোয়ান্টা বিনিময়ের মাধ্যমে ব্যাখ্যা করতে সক্ষম হয়। ইয়াং-মিলস ক্ষেত্রতত্ত্বের আলোকে সবল ও দুর্বল নিউক্লিয় বল এবং তাড়িচ্চুম্বকীয় বলকে একীভূত করার যে প্রচেষ্টা শুরু হয়, তাই অবশেষে স্ট্যান্ডার্ড মডেল অব পার্টিকেল রূপে পরিচিতি পায়। স্ট্যান্ডার্ড মডেল ব্যাখ্যা করে যে পদার্থের মৌলিকতম কণাগুলো কীভাবে নিজেদের মাঝে মিথষ্ক্রিয়া বা পারস্পরিক প্রতিক্রিয়া করছে এবং বলবাহক কণাগুলোর সাথে মিথষ্ক্রিয়া করে মৌলিক ৩টি বলের ক্ষেত্র কীভাবে সৃষ্টি করছে।
এই মডেল অনুসারে প্রকৃতিতে প্রাপ্ত সকল বলের জন্যই এক বা একাধিক কোয়ান্টা রয়েছে। বল তৈরি হয় এই কোয়ান্টাদের পারস্পারিক আদান- প্রদানের মাধ্যমে। দৃশ্যমান সকল পদার্থের গঠনগত মৌলিক কণাদের আচরণ এই তত্ত্বের আলোকে ব্যাখ্যা করা যায়। আমি এখানে দৃশ্যমান বলেছি, কেননা ডার্ক ম্যাটার, ডার্ক এনার্জি এবং অ্যান্টিম্যাটারের সৃষ্টিকে এই তত্ত্ব দ্বারা ব্যাখ্যা করা যায় না। বেরিয়নসূচক পদ্ধতি, হায়ারার্কি সমস্যা, নিউট্রিনো স্পন্দন, সবল সিপি প্রতিসাম্য সমস্যাসহ আরো অনেক কিছুই আছে, যেখানে স্ট্যান্ডার্ড মডেল ব্যর্থ হয়ে পড়ে।
তত্ত্বের সীমাবদ্ধতার কথা পরে বলব, আগে তত্ত্বটির ভালো দিকগুলির কথায় জানা যাক! প্রকৃতিতে প্রাপ্ত মৌলিক বল ৪টি। বিজ্ঞানীরা নতুন আরেকটি মৌলিক বলের দাবি করলেও সেটা এখনও চূড়ান্তভাবে প্রমাণিত হয়নি। ৪টি মৌলিক বলের মাঝে ৩টি মৌলিক বলেরই কোয়ান্টাম তত্ত্ব গঠন করতে পারে এই স্ট্যান্ডার্ড মডেল। মহাকর্ষ বল বাদে অন্য সব বলগুলোকে একীভূত করার কৃতিত্বও তাই এই মডেলের।
সবল নিউক্লীয় বলঃ
আমরা জানি সবল নিউক্লীয় বলের কারণেই নিউক্লিয়াসের স্থায়ীত্ব রয়েছে। নিউক্লিয়াসের মাঝে প্রোটন ও নিউট্রনের একত্রে থাকার মূল রহস্য সবল নিউক্লীয় আকর্ষণ বল। স্ট্যান্ডার্ড মডেল অনুসারে সবল নিউক্লীয় বলের জন্য দায়ী কণা হল গ্লুওন নামক একটি বলবাহক কণা। এই গ্লুওন মূলত গ্লুওন ক্ষেত্র নামক একটি ক্ষেত্র তৈরি করে, যে ক্ষেত্রে কোয়ার্ক নামক একপ্রকার কণা গ্লুওন কণাকে বিনিময়ের মাধ্যমে একত্রে থেকে প্রোটন ও নিউট্রনের সৃষ্টি করে। এই প্রোটন ও নিউট্রন আবার বিভিন্ন মেসন কণা দ্বারা আবদ্ধ থাকে। গ্লুওনের কাজ হল মেসনসহ সকল নিউক্লিওনকে বেঁধে রাখা। স্ট্যান্ডার্ড মডেলে মোট ১৮ রকমের কোয়ার্ক ও ৮ রকমের গ্লুওন কণা আছে, যাদের কালার নামক একটি বিশেষ বৈশিষ্ট্য আছে। স্ট্যান্ডার্ড মডেলের যে অংশে সবল নিউক্লীয় বলকে ব্যাখ্যা করা হয় তাকে কোয়ান্টাম ক্রোমোডাইন্যামিক্স বলে। এই "ক্রোমো" শব্দটি "Color" শব্দ থেকে এসেছে। এটি সংক্ষেপে QCD (Quantum ChromoDynamics) নামেও পরিচিত।
দুর্বল নিউক্লীয় বলঃ
স্ট্যান্ডার্ড মডেল অনুসারে লেপটন নামক বিশেষ এক শ্রেণির কণা রয়েছে। এই লেপটনদের স্পিন কোয়ান্টাম সংখ্যা সবসময় ভগ্নাংশ হয়, আর এরা পাউলির বর্জন নীতি মেনে চলে। দুর্বল নিউক্লীয় বল এই লেপটন কণাদের আচরণ থেকেই বের হয়ে আসে। তবে দুর্বল নিউক্লীয় বলের জন্য দায়ী কণা বা বলবাহক কণা হল W এবং Z কণা। ২ প্রকারের W কণা (W+ ও W-) ও ১ প্রকারের Z কণা রয়েছে। গ্লুওনের মত এরাও বোসন শ্রেণির কণা। স্ট্যান্ডার্ড মডেলের এই অংশকে বলা হয় কোয়ান্টাম ফ্লেভারোডাইন্যামিক্স, যা সংক্ষেপে QFD (Quantum FlavourDynamics) নামেও পরিচিত।
তড়িচ্চুম্বকীয় বলঃ
ম্যাক্সওয়েল সাহেবের তড়িচ্চুম্বকীয় বলকেও এই স্ট্যান্ডার্ড মডেল অন্তর্ভুক্ত করেছে। এই বলের জন্য দায়ী কোয়ান্টা হল ফোটন নামক এক প্রকার কণা। এটিও বলবাহক কণা। এই তত্ত্ব সবচেয়ে বেশিবার পরীক্ষিত তত্ত্ব ও সবচেয়ে সফল তত্ত্ব। চিরায়ত বলবিদ্যার (classical mechanics) এই তত্ত্বকে কোয়ান্টায়িত করার কৃতিত্ত্ব স্ট্যান্ডার্ড মডেলরই। এই অংশকে বলা হয় কোয়ান্টাম ইলেকট্রোডাইন্যামিক্স বা QED (Quantum ElectroDynamics)
এভাবেই তিনটি বলকে একীভূত করেছে স্ট্যান্ডার্ড মডেল। এই মডেল যদিও মহাকর্ষ বলকে একীভূত করতে পারেনি, তবুও গ্র্যাভিটন নামক একটি কল্পিত কণা ধরে নিয়ে স্ট্যান্ডার্ড মডেলের মাধ্যমেই মহাকর্ষকে ব্যাখ্যা করার চেষ্টা চলছে। গ্র্যাভিটন কণাকে এই মডেলের আওতায় নিয়ে আসা যায়, যা এখনও পর্যবেক্ষণ করা সম্ভব হয়নি। অন্যান্য প্রায় সকল কণা পর্যবেক্ষণ করা সম্ভব হয়েছে। তবে গ্র্যাভিটনের মতো স্ট্যান্ডার্ড মডেল কর্তৃক কল্পিত কণার সংখ্যাও কম নয়। তারপরেও এই মডেলকে এতটা সফল বলা যায় কারণ, ১৯৬০ থেকে '৭০ এর দশকে বিজ্ঞানীরা এই মডেল নিয়ে যে ভবিষ্যদ্বাণী করতেন তাই মিলে যেত। শক্তিশালী কোলাইডার বা এ্যাটম স্ম্যাশারগুলো এবং ক্লাউড চেম্বারে কণার গতিপথ থেকে এই মডেলের সত্যতা প্রমাণ করা যায়।
মূল কথা হল, এই মডেল প্রায় সকল প্রকার পদার্থেরই গঠন ও বলগত মিথষ্ক্রিয়া ব্যাখ্যা করতে সক্ষম। ম্যাক্সওয়েল ও ইয়াং মিলস ফিল্ডের সাহায্যে এই মডেল কাজ করে থাকে। তবে বিজ্ঞানী ক্লেইন ও কালুজা তাদের তত্ত্বে উচ্চ মাত্রা ব্যবহার করে ম্যাক্সওয়েলের তত্ত্ব ও মহাকর্ষকে একীভূত করার একটি উপায় দিয়েছিলেন। যেহেতু স্ট্যান্ডার্ড মডেল ম্যাক্সওয়েলের তত্ত্বকে ব্যাখ্যা করতে পারে, তাই আমরা আশা রাখতেই পারি যে স্ট্যান্ডার্ড মডেল অদূর ভবিষ্যতে মহাকর্ষ বলকেও ব্যাখ্যা করতে পারবে।
শুধু এটুকু পড়ে তৃপ্তি না পেলে ঢুঁ মেরে আসুনঃ
☛ স্ট্যান্ডার্ড মডেলের একটু গভীরে
সূত্র:
১. সার্ন
২। উইকিপিডিয়া
বর্তমান বিজ্ঞানীদের নিকট অন্যতম বড় একটা চ্যালেঞ্জ হল প্রকৃতির মৌলিক ৪ টি বলকে একীভূত করা। বিজ্ঞানীরা মনে করেন, এই মৌলিক বলগুলোকে একীভূত করা গেলে কসমোলজি বা সৃষ্টিতত্ত্ব, কণা-পদার্থবিজ্ঞান, জ্যোতির্পদার্থবিজ্ঞান ইত্যাদির হাজারো সমস্যার সমাধান হয়ে যাবে। সেই আদিকাল থেকেই সকল বলকে একই বলের বিভিন্ন রূপ হিসেবে দেখানোর চেষ্টা করা হয়েছে। কিন্তু, তখনও সকল মৌলিক বল আবিষ্কৃত না হওয়ায় বিজ্ঞানীরা মৌলিক বলগুলোকে একীভূত করতে পারেননি। পরবর্তীতে যখন সবল ও দুর্বল নিউক্লীয় বল আবিস্কৃত হয় তখন মৌলিক বলগুলোর একীভবনের জন্য অনেকগুলো তত্ত্ব গঠিত হয়। সুপারস্ট্রিং তত্ত্ব, লুপ কোয়ান্টাম গ্র্যাভিটি, ইয়াং-মিলস ফিল্ড এই তত্ত্বগুলোর মাঝে অন্যতম।
কোনো একটি বলকে ব্যাখ্যা করতে গেলে দরকার হয় ফিল্ড থিওরি বা ক্ষেত্র তত্ত্বের। যেমন মহাকর্ষ বলের জন্য যেমন মহাকর্ষ ক্ষেত্র রয়েছে। আইনস্টাইনের সফলতা ও নিউটনের ব্যর্থতার মূল কারণ হল আইনস্টাইন একটি মহাকর্ষ ক্ষেত্র তত্ত্ব গঠন করতে পেরেছিলেন, যা নিউটন পারেননি। দুর্বল ও সবল নিউক্লীয় বলের জন্য কোনো ক্ষেত্র তত্ত্ব যখন আবিষ্কৃত হয়নি, তখন ১৯৫৪ সালে এন. সি. ইয়াং ও তার ছাত্র আর. এল. মিলস একটি নতুন ক্ষেত্র তত্ত্ব দেন। এটি দুর্বল ও সবল নিউক্লীয় বলকে কোয়ান্টা বিনিময়ের মাধ্যমে ব্যাখ্যা করতে সক্ষম হয়। ইয়াং-মিলস ক্ষেত্রতত্ত্বের আলোকে সবল ও দুর্বল নিউক্লিয় বল এবং তাড়িচ্চুম্বকীয় বলকে একীভূত করার যে প্রচেষ্টা শুরু হয়, তাই অবশেষে স্ট্যান্ডার্ড মডেল অব পার্টিকেল রূপে পরিচিতি পায়। স্ট্যান্ডার্ড মডেল ব্যাখ্যা করে যে পদার্থের মৌলিকতম কণাগুলো কীভাবে নিজেদের মাঝে মিথষ্ক্রিয়া বা পারস্পরিক প্রতিক্রিয়া করছে এবং বলবাহক কণাগুলোর সাথে মিথষ্ক্রিয়া করে মৌলিক ৩টি বলের ক্ষেত্র কীভাবে সৃষ্টি করছে।
এই মডেল অনুসারে প্রকৃতিতে প্রাপ্ত সকল বলের জন্যই এক বা একাধিক কোয়ান্টা রয়েছে। বল তৈরি হয় এই কোয়ান্টাদের পারস্পারিক আদান- প্রদানের মাধ্যমে। দৃশ্যমান সকল পদার্থের গঠনগত মৌলিক কণাদের আচরণ এই তত্ত্বের আলোকে ব্যাখ্যা করা যায়। আমি এখানে দৃশ্যমান বলেছি, কেননা ডার্ক ম্যাটার, ডার্ক এনার্জি এবং অ্যান্টিম্যাটারের সৃষ্টিকে এই তত্ত্ব দ্বারা ব্যাখ্যা করা যায় না। বেরিয়নসূচক পদ্ধতি, হায়ারার্কি সমস্যা, নিউট্রিনো স্পন্দন, সবল সিপি প্রতিসাম্য সমস্যাসহ আরো অনেক কিছুই আছে, যেখানে স্ট্যান্ডার্ড মডেল ব্যর্থ হয়ে পড়ে।
তত্ত্বের সীমাবদ্ধতার কথা পরে বলব, আগে তত্ত্বটির ভালো দিকগুলির কথায় জানা যাক! প্রকৃতিতে প্রাপ্ত মৌলিক বল ৪টি। বিজ্ঞানীরা নতুন আরেকটি মৌলিক বলের দাবি করলেও সেটা এখনও চূড়ান্তভাবে প্রমাণিত হয়নি। ৪টি মৌলিক বলের মাঝে ৩টি মৌলিক বলেরই কোয়ান্টাম তত্ত্ব গঠন করতে পারে এই স্ট্যান্ডার্ড মডেল। মহাকর্ষ বল বাদে অন্য সব বলগুলোকে একীভূত করার কৃতিত্বও তাই এই মডেলের।
কণিকার স্ট্যান্ডার্ড মডেল |
আমরা জানি সবল নিউক্লীয় বলের কারণেই নিউক্লিয়াসের স্থায়ীত্ব রয়েছে। নিউক্লিয়াসের মাঝে প্রোটন ও নিউট্রনের একত্রে থাকার মূল রহস্য সবল নিউক্লীয় আকর্ষণ বল। স্ট্যান্ডার্ড মডেল অনুসারে সবল নিউক্লীয় বলের জন্য দায়ী কণা হল গ্লুওন নামক একটি বলবাহক কণা। এই গ্লুওন মূলত গ্লুওন ক্ষেত্র নামক একটি ক্ষেত্র তৈরি করে, যে ক্ষেত্রে কোয়ার্ক নামক একপ্রকার কণা গ্লুওন কণাকে বিনিময়ের মাধ্যমে একত্রে থেকে প্রোটন ও নিউট্রনের সৃষ্টি করে। এই প্রোটন ও নিউট্রন আবার বিভিন্ন মেসন কণা দ্বারা আবদ্ধ থাকে। গ্লুওনের কাজ হল মেসনসহ সকল নিউক্লিওনকে বেঁধে রাখা। স্ট্যান্ডার্ড মডেলে মোট ১৮ রকমের কোয়ার্ক ও ৮ রকমের গ্লুওন কণা আছে, যাদের কালার নামক একটি বিশেষ বৈশিষ্ট্য আছে। স্ট্যান্ডার্ড মডেলের যে অংশে সবল নিউক্লীয় বলকে ব্যাখ্যা করা হয় তাকে কোয়ান্টাম ক্রোমোডাইন্যামিক্স বলে। এই "ক্রোমো" শব্দটি "Color" শব্দ থেকে এসেছে। এটি সংক্ষেপে QCD (Quantum ChromoDynamics) নামেও পরিচিত।
দুর্বল নিউক্লীয় বলঃ
স্ট্যান্ডার্ড মডেল অনুসারে লেপটন নামক বিশেষ এক শ্রেণির কণা রয়েছে। এই লেপটনদের স্পিন কোয়ান্টাম সংখ্যা সবসময় ভগ্নাংশ হয়, আর এরা পাউলির বর্জন নীতি মেনে চলে। দুর্বল নিউক্লীয় বল এই লেপটন কণাদের আচরণ থেকেই বের হয়ে আসে। তবে দুর্বল নিউক্লীয় বলের জন্য দায়ী কণা বা বলবাহক কণা হল W এবং Z কণা। ২ প্রকারের W কণা (W+ ও W-) ও ১ প্রকারের Z কণা রয়েছে। গ্লুওনের মত এরাও বোসন শ্রেণির কণা। স্ট্যান্ডার্ড মডেলের এই অংশকে বলা হয় কোয়ান্টাম ফ্লেভারোডাইন্যামিক্স, যা সংক্ষেপে QFD (Quantum FlavourDynamics) নামেও পরিচিত।
তড়িচ্চুম্বকীয় বলঃ
ম্যাক্সওয়েল সাহেবের তড়িচ্চুম্বকীয় বলকেও এই স্ট্যান্ডার্ড মডেল অন্তর্ভুক্ত করেছে। এই বলের জন্য দায়ী কোয়ান্টা হল ফোটন নামক এক প্রকার কণা। এটিও বলবাহক কণা। এই তত্ত্ব সবচেয়ে বেশিবার পরীক্ষিত তত্ত্ব ও সবচেয়ে সফল তত্ত্ব। চিরায়ত বলবিদ্যার (classical mechanics) এই তত্ত্বকে কোয়ান্টায়িত করার কৃতিত্ত্ব স্ট্যান্ডার্ড মডেলরই। এই অংশকে বলা হয় কোয়ান্টাম ইলেকট্রোডাইন্যামিক্স বা QED (Quantum ElectroDynamics)
এভাবেই তিনটি বলকে একীভূত করেছে স্ট্যান্ডার্ড মডেল। এই মডেল যদিও মহাকর্ষ বলকে একীভূত করতে পারেনি, তবুও গ্র্যাভিটন নামক একটি কল্পিত কণা ধরে নিয়ে স্ট্যান্ডার্ড মডেলের মাধ্যমেই মহাকর্ষকে ব্যাখ্যা করার চেষ্টা চলছে। গ্র্যাভিটন কণাকে এই মডেলের আওতায় নিয়ে আসা যায়, যা এখনও পর্যবেক্ষণ করা সম্ভব হয়নি। অন্যান্য প্রায় সকল কণা পর্যবেক্ষণ করা সম্ভব হয়েছে। তবে গ্র্যাভিটনের মতো স্ট্যান্ডার্ড মডেল কর্তৃক কল্পিত কণার সংখ্যাও কম নয়। তারপরেও এই মডেলকে এতটা সফল বলা যায় কারণ, ১৯৬০ থেকে '৭০ এর দশকে বিজ্ঞানীরা এই মডেল নিয়ে যে ভবিষ্যদ্বাণী করতেন তাই মিলে যেত। শক্তিশালী কোলাইডার বা এ্যাটম স্ম্যাশারগুলো এবং ক্লাউড চেম্বারে কণার গতিপথ থেকে এই মডেলের সত্যতা প্রমাণ করা যায়।
মূল কথা হল, এই মডেল প্রায় সকল প্রকার পদার্থেরই গঠন ও বলগত মিথষ্ক্রিয়া ব্যাখ্যা করতে সক্ষম। ম্যাক্সওয়েল ও ইয়াং মিলস ফিল্ডের সাহায্যে এই মডেল কাজ করে থাকে। তবে বিজ্ঞানী ক্লেইন ও কালুজা তাদের তত্ত্বে উচ্চ মাত্রা ব্যবহার করে ম্যাক্সওয়েলের তত্ত্ব ও মহাকর্ষকে একীভূত করার একটি উপায় দিয়েছিলেন। যেহেতু স্ট্যান্ডার্ড মডেল ম্যাক্সওয়েলের তত্ত্বকে ব্যাখ্যা করতে পারে, তাই আমরা আশা রাখতেই পারি যে স্ট্যান্ডার্ড মডেল অদূর ভবিষ্যতে মহাকর্ষ বলকেও ব্যাখ্যা করতে পারবে।
শুধু এটুকু পড়ে তৃপ্তি না পেলে ঢুঁ মেরে আসুনঃ
☛ স্ট্যান্ডার্ড মডেলের একটু গভীরে
সূত্র:
১. সার্ন
২। উইকিপিডিয়া
2 comments
Write commentsকিছু কথা ভুলে গিয়েছিলাম। তাই আবার পড়লাম নতুন করে।
Reply☺
Reply