Advertisement

বৃহস্পতিবার, ২১ ডিসেম্বর, ২০১৭

 ১৯২৮ সালে প্রকাশিত একটি গবেষণাপত্রে বিজ্ঞানী পল ডিরাক প্রথম বলেছিলেন, ইলেকট্রনের চার্জ ধনাত্মক-ঋণাত্মক দুটোই হতে পারে। আর ধনাত্মক চার্জধারী (e$^+$) এই ইলেকট্রনেরই নাম পজিট্রন। অন্য নাম অ্যান্টিইলেক্ট্রন। প্রথম আবিষ্কৃত হয় ১৯২৯ সালে।
ইলেকট্রন ও তার প্রতিকণা পজিট্রন

ভর ইলেক্ট্রনের ভরের সমান।  একে বিটা প্লাস ($\beta^+$) দ্বারা প্রকাশ করা হয়। নির্গত হয় তেজ্বস্ক্রিয় ক্ষয়ের ফলে । আবার কখনও কখনও ফোটন বা একক তরঙ্গের আলো কোন ধাতব পরমানুর সাথে সংঘর্ষ করলেও এটি নির্গত হতে পারে। একটি প্রোটন ভেঙ্গে সধারণত একটি পজিট্রন একটি নিউট্রন ও কিছু শক্তি নির্গত হয়। পজিট্রন এর সাথে সংঘর্ষে প্রায় ১০২৪ কিলোইলেকট্রনভোল্ট শক্তি উৎপন্ন হয়।

পজিট্রন প্রাকৃতিক ও কৃত্রিম দুভাবেই উৎপন্ন হয়। মজার ব্যপার হলো, এটি প্রত্যেক মানুষের শরীর থেকেও নির্গত হয়! প্রাকৃতিক উৎস হলো মানব শরীরের পটাসিয়াম-৪০ আইসোটোপ। এ আইসোটোপ মানব দেহের সবচেয়ে প্রাচীন। জেনে অবাক হবেন যে ৭০ কেজির একজন মানব শরীরে প্রতিদিন ৪০০০টি পজিট্রন পটাসিয়াম-৪০ আইসোটোপ থেকে উৎপন্ন হয়। এছাড়াও কলার থেকেও পাওয়া যায় কিছু পজিট্রন।

পরমাণুর নিউক্লিয়াস ভেঙে ইলেকট্রন ও পজিট্রন তৈরি

কৃত্রিমভাবে ফ্লোরিন-১৮, অক্সিজেন-১৮, কার্বন-১৪, নাইট্রজেন-১৬ ও আরও কিছু পরমাণু আইসোটোপ তৈরী করে তা থেকে প্রাপ্ত পজিট্রন মানব দেহের কিছু রোগ নির্ণয়ে ব্যবহার হয়। অতিরিক্ত পজিট্রন (প্রায়-১০০০০০টি বা এর বেশী) কিন্তু মানব শরীর ও বিভিন্ন জীবের জন্য হুমকি স্বরুপ। যা আমাদের শরীরে ক্যান্সার হওয়ার জন্য যথেষ্ট।

আরও পড়ুনঃ 
☛ পারমাণবিক কণারা চার্জ ও ভর পেল কোথায়?
Category: articles

রবিবার, ১৯ মার্চ, ২০১৭

পরমাণুর মাঝে যে নিউক্লিয়াসের অস্তিত্ব আছে, তা আমরা জানতে পারি বিশ শতকের শুরুর দিকে। এই নিউক্লিয়াস কী দিয়ে গঠিত? কোন কোন কণা আছে এর মাঝে? কণাগুলো কীভাবে এর মাঝে আছে? এইসব প্রশ্নের উত্তর খুঁজতে খুঁজতে বিশ শতকের প্রায় অর্ধেকটাই পার হয়ে যায়। অবশেষে যা জানা যায় তা হলো, নিউক্লিয়াসে প্রোটন ও নিউট্রন নামক দুই ধরণের কণা একত্রে আবদ্ধ থাকে। একটি নিউক্লিয়াসে যত সংখ্যক প্রোটনই থাকুক না কেন, তারা যদি একত্রে থাকে তবে সেটা অবশ্যই কোনো না কোনো বলের কারণেই একত্রে আছে।

এই কণাগুলো যে বলের সাহায্যে আবদ্ধ থাকে, সেই বলকে বলা হয় সবল নিউক্লীয় বল। এই বল স্বল্প পাল্লার, অত্যাধিক শক্তিশালী ও আকর্ষণধর্মী। কেননা কুলম্ব সাহেবের স্থির বৈদ্যুতিক সমধর্মী চার্জের পরস্পর বিকর্ষণ করার সূত্র হতে আমরা জানি দুটো প্রোটন খুব নিকটে থাকলে প্রচণ্ড বিকর্ষণ করার কথা। কিন্তু তারা সেটা না করে বরং প্রচণ্ড আকর্ষণের সহিত নিউক্লিয়াসের মাঝে থাকে। আর এই আকর্ষণধর্মী বলটির নামই হলো সবল নিউক্লীয় বল।

সবল নিউক্লীয় বলের সাথে সাথে আরও আছে দুর্বল নিউক্লীয় বল। এই বল আবার কোনো আকর্ষণ-বিকর্ষণে জড়িত থাকে না। এর কাজ হল নিউক্লিয়াসের তেজস্ক্রিয় ভাঙন ঘটানো তথা নিউক্লিয়াস থেকে বিটা রশ্মি ক্ষয় করা। দূর্বল নিউক্লীয় বলকে তাই বল না বলে দুর্বল নিউক্লীয় মিথষ্ক্রিয়া বলাটা বেশি উত্তম। এই দুর্বল নিউক্লীয় মিথস্ক্রিয়া পদার্থবিদ্যার CP-প্রতিসাম্য লঙ্ঘন করে। প্রতিসাম্য হলো পদার্থবিদ্যার একটা কারসাজি। CP-প্রতিসাম্য হলো চার্জ ও প্যারিটি নামক দুই প্রতিসাম্যর মিশ্র প্রতিসাম্য। এর বক্তব্য হলো, একটি কণাকে এর প্রতিকণার সাথে অদল-বদল করলেও পদার্থবিদ্যার সূত্রগুলোর কোনো নড়চড় হবে না। এ অংশের নাম সি প্রতিসাম্য (C symmetry)। আর পি প্রতিসাম্যে মানে, কণাকে এর দর্পণ রূপের সাথে অদল-বদল করলেও সূত্র একই রকম থাকবে।

প্রতিসাম্য বিশ্লেষণ করে কণিকা-প্রতিকণিকা সম্পর্ক, প্রকৃতির নিয়ম ইত্যাদি স্পষ্ট হওয়া যায়। মজার ব্যাপার হলো দুর্বল নিউক্লীয় বল CP-প্রতিসাম্যকে লঙ্ঘন করলেও সবল নিউক্লিয় বল CP-প্রতিসাম্যকে তেমন একটা লঙ্ঘন করে না। তত্ত্বীয়ভাবে এটা খুবই ব্যতিক্রমী ও ব্যাখ্যাহীন একটা ঘটনা। কণা-পদার্থবিদ্যার ভাষায় এই ঘটনাকে বলা হয় সবল CP সমস্যা।

এই সবল CP সমস্যা সমাধানে বিভিন্ন প্রস্তাবনা দেয়া হলেও এখন পর্যন্ত সুস্পষ্ট কারণ খুঁজে পাওয়া যায়নি। কিছু বিজ্ঞানী ধারণা করেছেন, অ্যাক্সিয়ন নামক একটি ক্ষেত্র আছে। সবল নিউক্লিয় বলের ক্ষেত্রে CP-প্রতিসাম্য লঙ্ঘনের জন্য দায়ী প্রভাবকগুলোকে এই অ্যাক্সিয়ন ক্ষেত্র নিস্ক্রিয় করে ফেলে। ফলে সবল নিউক্লিয় বল CP-প্রতিসাম্যকে লঙ্ঘন করতে পারে না। ১৯৭৭ সালে বিজ্ঞানী রবার্তো দানিয়েল ও হেলেন কুইন গাণিতিকভাবে দেখান, এই অ্যাক্সিয়ন ক্ষেত্র কীভাবে সবল CP সমস্যা সমাধান করতে পারে। পরবর্তীতে বিজ্ঞানী ওয়াইনবার্গ দেখান যে, এই কোয়ান্টাম ক্ষেত্রের অস্তিত্ব থাকলে একটি কোয়ান্টা তথা ক্ষেত্রকণাও থাকবে, যার নাম তিনি দেন অ্যাক্সিয়ন কণা। ভবিষ্যদ্বাণীর পর থেকেই গত ৪০ বছর ধরে বিজ্ঞানীরা বিভিন্নিভাবে এই কণার অনুসন্ধান করছেন। তবুও এখন পর্যন্ত এই কণার কোনো সন্ধান পাওয়া যায়নি।

এই কণার একটি ধর্ম হলো - তড়িচ্চুম্বকীয় ক্ষেত্রের মাঝে অ্যাক্সিয়ন কণা মুহূর্তের মাঝে ভেঙে গিয়ে ফোটন কণার জন্ম দিবে। এই কণাটির ভর অনেক অনেক কম। দশমিকের পর ৪০ টি শূন্য দিয়ে একটি ১ বসালে যত কেজি হয়, একটি কণার ভর প্রায় তত। কণাটির কোনো চার্জ নেই। তাই একে শনাক্ত করাও দুরূহ কাজ বটে।

তড়িচ্চুম্বকীয় ক্ষেত্রের উপস্থিতিতে (নীচের যুগ্ম পুরু রেখা) অ্যাক্সিয়ন কণা থেকে (উপরের বামপাশের ভাঙা ভাঙা রেখা) ফোটন কণা উৎপত্তির (উপরের ডানপাশের বক্ররেখা) ফাইনম্যান ডায়াগ্রাম।

জ্যোতিপদার্থবিদ্যার অন্যতম রহস্য ডার্ক ম্যাটারের সম্ভাব্য কারণ হিসেবেও অ্যাক্সিয়নকে দায়ী করা হয়। তবে অধিকাংশ বিজ্ঞানীর মতে ডার্ক ম্যাটারের কারণ হবে WIMP (Weakly Interacting Massive Particle বা দুর্বল মিথষ্ক্রিয়ায় অংশ নেওয়া ভারী কণা) জাতীয় কোনো কণা, অ্যাক্সিয়ন নয়।

অ্যাক্সিয়ন শণাক্তকরণ অনেক কঠিন হলেও শক্তিশালী তড়িচ্চুম্বকীয় ক্ষেত্রে নিয়ে এসে ফোটন কণায় পরিণত করে এই কণার খোঁজ করার জন্য কাজ চলছে। ইউরোপের নিউক্লীয় গবেষণা সংস্থা সার্নও ইতোমধ্যে আন্তর্জাতিক অ্যাক্সিয়ন পর্যবেক্ষণকেন্দ্র নির্মাণ শুরু করে দিয়েছে।

আন্তর্জাতিক অ্যাক্সিয়ন পর্যবেক্ষণকেন্দ্রের প্রস্তাবিত রূপ।


অনেক আগে থেকেই বিভিন্ন ল্যাবে এই কণাকে নিয়ে গবেষণা হলেও গত বছরের শুরুতে এমআইটির (ম্যাসাচুসেটস ইনস্টিটিউট অব টেকনোলজি) একদল গবেষক শক্তিশালী চৌম্বকক্ষেত্র দ্বারা নতুন এক পদ্ধতিতে অ্যাক্সিয়ন কণার অনুসন্ধান শুরু করছেন। বেশ কয়েকটি গবেষণা দাবী করেছে ইতোমধ্যেই পর্যবেক্ষণ করা সম্ভব হয়েছে এই কণা। যদিও এখনও তা সার্বজনীন গ্রহণযোগ্যতা পায়নি।

যদি অ্যাক্সিয়ন কণা পাওয়া সম্ভব হয়, তবে কণা-পদার্থবিদ্যার সবচেয়ে বড় সমস্যাগুলির একটি তথা সবল CP সমস্যা অতি দ্রুতই সমাধান করা যাবে। তাই যতদিন অ্যাক্সিয়ন কণা ধরা না দেয়, ততদিন কণা-পদার্থবিদরা না হয় আন্তর্জাতিক অ্যাক্সিয়ন পর্যবেক্ষনকেন্দ্র ও এমআইটি-র সেই গবেষক দলের দিকেই তাকিয়ে থাকুক।

১। সি,পি ও টি প্রতিসাম্য - ম্যাট স্ট্রসলার।
২। আন্তর্জাতিক অ্যাক্সিয়ন পর্যবেক্ষণকেন্দ্রের ওয়েবসাইট
১। উইকিপিডিয়াঃ Axion,  CP violation এবং Weakly interacting massive particles
Category: articles

শনিবার, ১২ নভেম্বর, ২০১৬


একটা সময় পৃথিবীর অবস্থা এমন ছিল যে, সবাই মনে করত কোনো পদার্থকে চিরকাল ধরে টুকরা করা যাবে। টুকরা করতে করতে এমন কোনো ক্ষুদ্রতম টুকরা পাওয়া যাবে না, যাকে আরও বেশি ভাঙা অসম্ভব হবে। কিন্তু, ডেমোক্রিটাস বললেন বিপরীত কথা। পরমাণু বলে এমন কিছু আছে যা অবিভাজ্য। তারপর ডালটন সাহেবও তার সাথে সুর মেলালেন। কিন্তু বিজ্ঞানী থমসন, বোর, রাদারফোর্ড প্রমুখরা দেখালেন যে, পরমাণু মাঝে নিউক্লিয়াস আছে। তাতে আবার প্রোটন, নিউট্রন আছে। নিউক্লিয়াসের চারপাশে সদা সর্বদা ইলেকট্রনও ঘুর্ণায়মান আছে। এই প্রোটন, নিউট্রনের ভর নির্ণয় করতেও বিজ্ঞানীরা সফল হয়েছিলেন। কিন্তু, অনেকে প্রশ্ন করল যে, প্রোটন আর নিউট্রন ভরই বা পেল কোথায়? চার্জই বা কীভাবে পেল?

এই রকম আরো কিছু প্রশ্নের উত্তর দেবার চেষ্টা করলেন বিজ্ঞানী মারি গেল ম্যান। তিনি বললেন, প্রোটন আর নিউট্রনের মাঝে আছে কোয়ার্ক, যা ফার্মিয়ন শ্রেণির কণা। হরেক রকমের কোয়ার্ক কণা দ্বারা এই সকল পারমাণবিক কণারা গঠিত। তার মানে কোয়ার্করা হল অতি-পারমাণবিক (subatomic particle) কণা। তিনি বললেন, কোয়ার্করা প্রচন্ড বেগে প্রোটনের মাঝে চলাচল করছে। তাদের গতির কারণে আপেক্ষিক ভরের সৃষ্টি হয়। এভাবে প্রোটন, নিউট্রনের ভরের সৃষ্টি হয়। তিনি দেখালেন, একটা প্রোটন দুইটা আপ ও একটা ডাউন কোয়ার্ক- মোট ৩টা কোয়ার্ক দিয়ে তৈরি। তেমনি একটা নিউট্রন দুইটা ডাউন ও একটা আপ কোয়ার্ক দিয়ে তৈরি।

প্রোটন ও নিউট্রন তৈরি আপ ও ডাউন কোয়ার্কের মিশ্রণে।

তাহলে মনে আবার প্রশ্ন জাগতে পারে, কোয়ার্ক কি তাহলে দুই প্রকার? আপ এবং ডাউন? না, কোয়ার্ক হল ৬ প্রকার। আপ ও ডাউন কোয়ার্ক ছাড়াও আছে চার্ম, স্ট্রেঞ্জ, টপ ও বটম কোয়ার্ক। তবে প্রোটন ও নিউট্রনে শুধু আপ ও ডাউন কোয়ার্কই থাকে। এই আপ কোয়ার্কের চার্জ হল +$\frac{২}{৩}$ এবং ডাউন কোয়ার্কের চার্জ হল -$\frac{১}{৩}$. একটু হিসাব নিকাশ করলে দেখা যায় প্রোটনে যেহেতু ২টা আপ ও ১টা ডাউন কোয়ার্ক আছে, তাই এর চার্জ +১ আবার নিউট্রনে যেহেতু ২টা ডাউন ও ১টা আপ কোয়ার্ক আছে, তাই এর চার্জ শূন্য। কত সুন্দর করে চার্জের হিসাব মিলে গেল। তাই না!! তবে চার্জের হিসাব মিললেও ভরজনিত কিছু সমস্যা থেকেই গেল।

প্রোটন ও  নিউট্রনের চার্জের হিসাব 

সেই সমস্যায় একটু পরে আসছি। আপাতত পারমাণবিক কণারা যে কোয়ার্ক থেকে ভর পেয়ে আসছে সেটা জানা গেল। সাধারণত, এই তথ্য পেয়ে অনেকে বিভ্রান্ত হয়ে পড়ে। মনে করে নেয় যে, ভরের সবটুকুই কোয়ার্ক থেকে আসছে। আসলে কিন্তু তা নয়। কোয়ার্ক শুধুমাত্র স্থিতিভর(নিশ্চল ভর) প্রদান করে। কণা-পদার্থবিদ্যায় ভর বলতে স্থিতিভরকেই বুঝানো হয়। যেমন: মানবদেহের স্থিতিভর প্রায় এক কেজির মত। অবশিষ্ট যে ভর পাওয়া যায় তা হল কোয়ার্কের গতিজনিত ভর বা আপেক্ষিক ভর। কোয়ার্কসহ সকল ফার্মিয়নরা কোয়ান্টাম জগতে আলোর কাছাকাছি বেগে মিথস্ক্রিয়া দেখায়। তাই এক্ষেত্রে ভরবৃদ্ধি ঘটে। সুতরাং, ভরের ব্যাপারে স্পষ্ট ধারণা রাখা প্রয়োজন, তা নাহলে কণা-পদার্থবিদ্যার সমীকরণে গরমিল হয়ে যেতে পারে।

সমস্যাটিতে ফিরে আসি। প্রোটন, নিউট্রন তো ভর পেল। কিন্তু, প্রশ্নকারীরা বলল, কোয়ার্কের ভরই বা কীভাবে এল? এবার বিজ্ঞানীরা খুব ভাল একটা উত্তর দিলেন। তারা বললেন, হিগস নামের একটা ক্ষেত্র আছে, যেই ক্ষেত্রে কোনো কোয়ার্ক কণা প্রবেশ করলেই তার ভর তৈরি হয়ে যায়। বলা যায়, হিগস ক্ষেত্রে চলাচলকারী কণাদের ভর হিগস ক্ষেত্র প্রদান করে। এই হিগস ক্ষেত্র ও কণাদের অস্তিত্বও বিজ্ঞানীরা সম্প্রতি খুঁজে পেয়েছেন। ২০১২ সালে। সুতরাং ভর নিয়ে আর কোনো সমস্যা রইলনা। অনেকে হয়ত প্রশ্ন করবে, হিগস ক্ষেত্র ভর কীভাবে দেয়? হিগস ক্ষেত্রের ভরই কোথা থেকে এল? এটা অন্য একটা আলোচনার বিষয় হলেও সংক্ষেপে বলছি।

হিগস ক্ষেত্রের একটি কোয়ান্টা আছে। যার নাম হিগস কণা। এই বোসন কণা অন্য কণাদের সাথে মিথস্ক্রিয়া করে বাঁধা প্রদান করে। হিগস ক্ষেত্রে চলাচলকারী কণাদের এই বাঁধাকেই আমরা ভর হিসেবে দেখি। পুরো মহাবিশ্ব হিগস কণা দিয়ে পূর্ণ। সৃষ্টিলগ্নের পর মহাবিশ্ব যখন স্থিতাবস্থায় আসতে থাকে, তখন হিগস কণা জমতে(condensed) থাকে। এই জমার প্রক্রিয়াতেই হিগস কণা নিজে ভর পায়। মজার বিষয় হল হিগস ক্ষেত্রের উৎপত্তি যে ক্ষেত্র থেকে তা কাল্পনিক ক্ষেত্র। এই কাল্পনিক ক্ষেত্র কীভাবে বাস্তব ভর দেয়, তাও সমাধান করতে বিজ্ঞানীরা সক্ষম হয়েছে। এই ঘটনা নিয়ে বিস্তারিত লিখব শীঘ্রই। 

উল্লেখ্য যে, ইলেকট্রন কিন্তু কোনো আপ বা ডাউন কোয়ার্কের সমন্বয়ে গঠিত নয়। ইলেকট্রন একেবারেই মৌলিক কণা। একে আর টুকরা করা যায় না। কোয়ার্ক থাকে প্রোটন আর নিউট্রনের মাঝে। এর ভিতর অনেক কথা আছে। যেমন, আপ ও ডাউন কোয়ার্ক কীভাবে প্রোটন অথবা নিউট্রনের ভিতরে একত্রে আছে? এরা মূলত গ্লুয়ন নামক (আঠা বা গ্লু থেকে নাম করা হয়েছে) এক প্রকার কণা দ্বারা একত্রে যুক্ত থাকে। গ্লুয়নের গল্পের রাজ্য কোয়ার্কের চেয়েও বিশাল। সেই গল্প আপাতত তোলা থাক।

এ সম্পর্কে আরো বিস্তারিত জানতে পড়ুনঃ

সূত্রঃ
১। https://en.wikipedia.org/wiki/Murray_Gell-Mann
২। https://en.wikipedia.org/wiki/Higgs_boson
Category: articles

রবিবার, ৬ নভেম্বর, ২০১৬

আগের পর্বের লিঙ্কঃ ১ম পর্ব, ২য় পর্ব

আমাদের মহাবিশ্বে মোট ৪টি মৌলিক বল ক্রিয়াশীল রয়েছে। সবল নিউক্লিয় বল, দুর্বল নিউক্লিয় বল, তড়িচ্চুম্বকীয় বল ও মহাকর্ষীয় বল। এসব বলের রয়েছে ভিন্ন ভিন্ন পাল্লা ও ভিন্ন ভিন্ন শক্তি। এই বলগুলোর মাঝে মহাকর্ষীয় বলের পাল্লা অসীম পর্যন্ত বিস্তৃত হলেও এটি সবচেয়ে দুর্বল বল। তড়িচ্চুম্বকীয় বলের পাল্লাও অসীমতক, কিন্তু এটি মহাকর্ষের তুলনায় কয়েকগুণ শক্তিশালী বল। সবল এবং দুর্বল নিউক্লিয় বলের পাল্লা অতি ক্ষুদ্র, এরা অতি-পারমাণবিক জগতে প্রভাব বিস্তার করতে পারে। 

নামে উলটা হলেও দুর্বল নিওক্লিয় বল মহাকর্ষের চেয়ে অনেকগুণ শক্তিশালী। অবশ্য বাকী দুই বলের চেয়ে সে ঠিকই দুর্বল। সবল নিউক্লিয় বল ৪টি বলের মাঝে সবচেয়ে বেশি শক্তিশালী বল। সমস্যা হল  এই বল কার্যকর থাকে নিউক্লিয়াসের ভেতরেই। এর চেয়ে বেশি পাল্লায় এই বল কার্যকর থাকে না।

বলবাহক কণিকাঃ

বিভিন্ন ধরনের বোসন কণা

৪টি মৌলিক বলের মাঝে ৩টি মৌলিক বলেরই উৎপত্তি হয় বলবাহক কণিকাদের আদান-প্রদানের মাধ্যমে। স্ট্যান্ডার্ড মডেলে বলবাহক কণিকাদের গ্রুপকে বলা হয় 'বোসন' গ্রুপ। বোসন নামটি উপমহাদেশীয় বিজ্ঞানী সত্যেন বোস এর নামানুসারেই এসেছে। ফার্মিয়ন কণিকাগুলি শক্তির বিচ্ছিন্ন পরিবহন ঘটায় নিজেদের মাঝে বোসন কণিকাদের আদান-প্রদানের মাধ্যমে। 

প্রতিটা মৌলিক বলের সাথেই একটা সম্পর্কযুক্ত বোসন কণিকা রয়েছে। যেমন, সবল নিউক্লিয় বলের বাহক হল গ্লুওন (g) ও মেসন শ্রেণির বোসন কণিকা, তড়িচ্চুম্বকীয় বলের বাহক হল ফোটন এবং দুর্বল নিউক্লিয় বলের জন্য দায়ী হল ডব্লিউ বোসন ((W+, W-) ও জেড বোসন ((Z)। মহাকর্ষীয় বলের জন্য দায়ী কোনো কণিকা তথা মহাকর্ষ বলের বাহক এখন পর্যন্ত খুঁজে পাওয়া সম্ভব হয়নি। তবে স্ট্যান্ডার্ড মডেলের ভবিষ্যদ্বাণী অনুসারে মহাকর্ষ বলের বাহক হল গ্র‍্যাভিটন (G) নামক অনুকল্পিত কণিকা। 
চিত্রঃ মৌলিক বল

স্ট্যান্ডার্ড মডেল তড়িচ্চুম্বকীয় বল, দুর্বল ও সবল নিউক্লিয় বল এবং এই বল তিনটির বাহক কণিকাগুলোকে একই নিয়মের অধীনে আবদ্ধ করেছে। সাথে সাথে এটাও ব্যাখ্যা করতে সক্ষম হয়েছে যে, কেমন করে এই বলগুলি ফার্মিয়নদের উপর প্রতিক্রিয়া করে। যাই হোক, আসল কথা হল আমাদের প্রাত্যাহিক জীবনের সবচেয়ে বেশি পরিচিত বল মহাকর্ষীয় বল, স্ট্যান্ডার্ড মডেলের অন্তর্ভূক্ত নয়। স্ট্যান্ডার্ড মডেলের দ্বারা মহাকর্ষীয় বল ব্যাখ্যা করা এবং এই মডেলের মাঝে মহাকর্ষীয় বলের বাহকের স্থান করে দেয়াটা বিজ্ঞানীদের নিকট একটা চ্যালেঞ্জ হয়ে দাঁড়িয়েছে।

আণবিক জগতের পদার্থবিজ্ঞান ব্যাখ্যা করার জন্য  উৎপত্তি হয়েছিল কোয়ান্টাম তত্ত্বের। আবার, বৃহৎ বস্তুর পদার্থবিজ্ঞান ব্যাখ্যার ক্ষেত্রে আপেক্ষিকতার সার্বিক তত্ত্ব ব্যবহার করা হয়। কিন্তু, এই দুইটি তত্ত্ব একইসাথে ব্যবহারযোগ্য নয়। এখন পর্যন্ত কোনো বিজ্ঞানীই স্ট্যান্ডার্ড মডেলের আলোকে এই দুই তত্ত্বকে গাণিতিকভাবে সামঞ্জস্যপূর্ণ দেখাতে পারেননি। কিন্তু কণা পদার্থবিদ্যার জন্য এটা তেমন বড় কোনো সমস্যা নয়। কেননা, যখন মহাকর্ষকে কণিকাদের ক্ষুদ্র জগতে বিবেচনা করা হয়, তখন মহাকর্ষীয় প্রভাব এত ক্ষুদ্র হয় যে তা বর্জনযোগ্য। অনেক ফার্মিয়ন মিলে যখন চেয়ার- টেবিল বা মানবদেহ কিংবা গ্রহ-নক্ষত্রের মতো বড় বড় বস্তু তৈরি করে তখনই মহাকর্ষ অনুভূত হয়। তাই, মহাকর্ষীয় বলের মতো একটা মৌলিক বলকে হিসেবের বাইরে রেখেও বাকি সব ক্ষেত্রে স্ট্যান্ডার্ড মডেল দারুণভাবে কাজ করে।

বলবাহক কণিকা কীভাবে বল বহন করেঃ

কল্পনা করুন, একটা মাঠে দুই বন্ধু বল ছোড়াছুড়ি খেলছে। তারা খুব একটা জোরে বল ছুড়তে পারে না, আবার বলকে মাটিতে পড়তেও দিতে চায় না। তাহলে নিশ্চয় তাদেরকে অতি কাছাকাছি অবস্থান করতে হবে এবং বল ছোড়াছুড়ি নিরবিচ্ছিন্নভাবে চালিয়ে যেতে হবে। তারা এই শর্ত মেনে ইচ্ছা করলেই দূরে যেতে পারবে না। কারণ, তাদের মধ্যবর্তী দূরত্ব বেড়ে গেলে তারা বলটা আর ধরতে পারবে না। তাই তাদেরকে কাছাকাছিই থাকতে হবে।

ফার্মিয়ন কণিকারাও এইরকম কিছু বোসন কণিকার বল নিয়ে ছোড়াছুড়ি করে বলে নিজেরা আলাদা হতে পারে না, একত্রে থাকে। আলাদা ক্ষেত্রে আলাদা আলাদা ফার্মিয়নের জন্য আলাদা আলাদা বোসন কণিকা রয়েছে। যেমন, পরমাণুর প্রোটন ও নিউট্রনের কোয়ার্কেরা পরস্পরের মাঝে পাই মেসন বা পাইওন নামের একজাতীয় বোসন কণিকা ছোড়াছুড়ি করে অর্থাৎ এইক্ষেত্রে সবল নিউক্লিউ বলের জন্য এই পাই মেসন দায়ী। এইরকম প্রোটনের মাঝে কোয়ার্কেরা পরস্পর গ্লুওন নামক বোসন কণিকা আদান প্রদান করতেই থাকে বলে তারা একত্রে থাকে।

কোন কণিকার সাথে কোন কণিকা মিথস্ক্রিয়া করে তা জানতে নিচের ছবিটি সহায়ক হবে।
চিত্রঃ বিভিন্ন বল ও কণার সম্পর্ক 


বোসনঃ

স্ট্যান্ডার্ড মডেলের বোসন শ্রেণির কণিকারা পাউলির বর্জন নীতি মেনে চলে না। অর্থাৎ একই কোয়ান্টাম অবস্থায় এদের অসীম সংখ্যক কণিকা অবস্থান করতে পারে, যেখানে ফার্মিয়নরা একই কোয়ান্টাম অবস্থায় মাত্র একটা কণিকাই অবস্থান করতে পারে। বোসন কণিকাদের এই বৈশিষ্ট্য বলা হয় বোস-আইনস্টাইন সংখ্যায়ন থেকে বেরিয়ে এসেছে। এই কণিকাদের স্পিন সংখ্যা অবশ্যই পূর্ণ সংখ্যা হবে, ফার্মিয়নদের মত অপূর্ণ নয়। তবে দুইটি অর্ধপূর্ণ স্পিনবিশিষ্ট ফার্মিয়ন মিলে একটা পূর্ণ স্পিনবিশিষ্ট বোসন হতে পারে। যেমন: মেসন একপ্রকার বোসন। অতি-পরিবাহীতা, অতি-প্রবাহীতা ইত্যাদি বোসন কণিকার বৈশিষ্ট্য।

বোসন কণিকার গুরত্ব অনেক। কেননা, বোসন কণিকা না থাকলে ফার্মিয়নরা একত্র হতে পারত না। আবার আলোর জন্য দায়ী কণিকা ফোটনও একপ্রকার বোসন। যদি ফোটন না থাকত, তবে প্রাণিজগতকে দৃষ্টিশক্তির জন্য অন্য কোনো বোসন সংবেদী চোখ ব্যবহার করতে হত, যেটা তুলনামূলক জটিল হত। কসমোলজিক্যাল দৃষ্টিকোণ থেকে গুরুত্বপূর্ণ এই কণিকা শ্রেণিরই অন্তর্ভূক্ত কণিকা হল কল্পিত গ্র‍্যাভিটন কণিকা। মহাকর্ষকে অন্য সব বলের সাথে একীভূত করে স্ট্যান্ডার্ড মডেল থিওরি অব এভরিথিং এর দাবিদার হতে চাইলে ২ স্পিন বিশিষ্ট, চার্জহীন এই বোসন খুঁজে পাওয়া এখন সময়ের দাবি। তাই, বোসন কণিকাকে স্ট্যান্ডার্ড মডেলের অন্যতম একটা সৌন্দর্য বলে আখ্যায়িত করাই যায়।
Category: articles

মঙ্গলবার, ২৫ অক্টোবর, ২০১৬

এর আগে আমরা স্ট্যান্ডার্ড মডেলের প্রাথমিক পরিচয় নিয়ে আলোচনা করেছিলাম। তত্ত্বটি আসলে এতটা ব্যাপক যে অতটুকু জেনে জ্ঞানপিপাসু মন তৃপ্ত হয় না। সে জন্যেই এই লেখা।

ইয়াং- মিলস ফিল্ড হল এমন একটি ফিল্ড যার আলোকে দুর্বল ও সবল নিউক্লীয় বল এবং তড়িচ্চুম্বকীয় বলের ব্যাখ্যা দেয়া যায়। এই ফিল্ডের আলোকে এ পর্যন্ত জ্ঞাত সকল অতি-পারমাণবিক কণিকাদের আচরণও বর্ণনা করা যায়। শুধু কি তাই? ইয়াং- মিলস ফিল্ড তথা স্ট্যান্ডার্ড মডেলের পরিপূর্ণতার জন্য বিজ্ঞানীরা একের পর এক বিভিন্ন কণা কল্পনা করে যাচ্ছেন আর পরবর্তীতে তা পেয়েও যাচ্ছেন, যা স্ট্যান্ডার্ড মডেলে প্রতিনিয়তিই যোগ হয়ে যাচ্ছে। সদ্য যোগ হওয়া হিগস-বোসন (২০১২), টপ কোয়ার্ক(১৯৯৫), টাউ নিউট্রিনো(২০০০) ইত্যাদি কণিকাগুলো সবই একসময় হাইপোথেটিক্যাল বা অনুমিত কণিকা ছিল।

বিজ্ঞানীরা বিভিন্ন পরীক্ষার ফল ব্যাখ্যা করতে গিয়ে এই কণিকাগুলোর অস্তিত্বের কথা ধারণা করেন। পরবর্তীতে বিভিন্ন কোলাইডারে এইসব কণিকা খুঁজে পাওয়া গেলে তাদের হাইপোথেটিক্যাল জীবন শেষ হয়ে তারা স্ট্যান্ডার্ড মডেলে কণিকা হিসেবে মর্যাদা পায়। এখন পর্যন্ত হাইপোথেটিক্যাল অবস্থায় থাকা গ্র্যাভিটন কণা (মহাকর্ষের জন্যে প্রস্তাবিত কণা) যদি চিহ্নিত করা যায় বা পর্যবেক্ষণ করা যায়, তবে তা স্ট্যান্ডার্ড মডেলের পূর্ণতা পাবার দিকে বিশাল একটা পদক্ষেপ ফেলবে। কারণ গ্র্যাভিটন কণা অস্তিত্বশীল হলে ৪টি মৌলিক বলকে একীভূত করা হবে সময়ের ব্যাপার মাত্র।


স্ট্যান্ডার্ড মডেলের মৌলিক কণিকাঃ

দুর্বল ও সবল নিউক্লীয় বল এবং তড়িচ্চুম্বকীয় বল তিনটিকে ব্যাখ্যা করতে গিয়ে ইয়াং- মিলস ফিল্ড থেকে কিছু কণার উদ্ভব হয়। মূলত এদের কণা না বলে কোয়ান্টাম ফিল্ডে একটি একক কোয়ান্টা বলাই অধিক ভাল। তারপরেও আমরা বলার সুবিধার্থে এগুলোকে কণা বলব।

ফার্মিয়নঃ 

আমরা আমাদের চারপাশে যা কিছু দেখি তার সবই কিছু মৌলিক কণিকা দ্বারা তৈরি। স্ট্যান্ডার্ড মডেলে সকল পদার্থ ও শক্তি ব্যাখ্যার জন্য মোট ৬১ টি মৌলিক কণিকা এবং প্রতি-কণিকার কথা বলা হয়েছে। এই বিশাল সংখ্যক কণিকার জন্য একবার কণা- পদার্থবিদ এনরিকো ফার্মিতো বলেই ফেলেছিলেন যে,
স্ট্যান্ডার্ড মডেল যতগুলি কণিকার ভবিষ্যদ্বাণী করছে আর যতগুলি কণিকা পর্যবেক্ষণ করা হচ্ছে তাদের সবার নাম মনে রাখতে পারলে তো আমি একজন উদ্ভিদিবিজ্ঞানী হয়ে যাব!!

এই মৌলিক কণিকাগুলোর মাঝে কিছু কিছু কণিকা আছে যারা পদার্থ তথা পরমাণু গঠন করে। আবার কিছু কিছু কণিকা আছে যারা নিজেরা পরস্পর অথবা অন্য কণিকার সাথে মিথষ্ক্রিয়া (interaction) করে বিভিন্ন বলের সৃষ্টি করে। মোটা দাগে যদি বিভাজন করা হয় তবে, গঠনগত মৌলিক কণিকাগুলোকে বলা হয় ফার্মিয়ন এবং বলবাহক কণিকাগুলোকে বলা হয় বোসন।  মৌলিক কণিকার প্রথম গ্রুপকে স্ট্যান্ডার্ড মডেলে বলা হয় ফার্মিয়ন। এদের নামকরণ করা হয়েছে নিউক্লিয়ার পদার্থবিজ্ঞানী এনরিকো ফার্মির নামের সম্মানার্থে। বিজ্ঞানী এনরিকো ফার্মি এবং পল ডিরাক কণিকাদের কোয়ান্টাম অবস্থা ব্যাখ্যার জন্য একটা সংখ্যায়ন দেন, যা ডিরাক-ফার্মি সংখ্যায়ন নামে পরিচিত। ফার্মিয়নরা এই সংখ্যায়ন মেনে চলে। এরা পাউলির বর্জন নীতিও মেনে চলে। সাধারণভাবে ফার্মিয়ন সাধারণত দুইটি ভাগে বিভক্ত, যাদের বলা হয় কোয়ার্ক এবং লেপটন।

কোয়ার্কঃ

এদের প্রতিটা ভাগে আবার ৬ টি মৌলিক কণিকা আছে যারা জোড়ায় জোড়ায় আবির্ভূত হয়েছে, বা একই জেনারেশনে আবির্ভূত হয়েছে বলা হয়। এই "জেনারেশন"-এর সাথে কিন্তু বাংলা "প্রজন্ম"-এর তেমন কোনো মিল নেই। মূলত, সবচেয়ে হালকা এবং স্থায়ী কণিকাকে রাখা হয়েছে প্রথম জেনারেশনে, যেখানে তার চেয়ে ভারী এবং কম স্থায়ী কণিকাকে রাখা হয়েছে দ্বিতীয় জেনারেশনে এবং সবচেয়ে ভারী এবং সর্বনিম্ন স্থায়ী কণিকাকে রাখা হয়েছে তৃতীয় জেনারেশনে। সুতরাং, বুঝতেই পারছেন, কোয়ার্ক আর লেপটনকে তিনটি জেনারেশনে জোড়ায় জোড়ায় ভাগ করা হয়েছে।

তিন জেনারেশনে তাই মোট ৩ জোড়া কোয়ার্ক রয়েছে। প্রথম জেনারেশনে আছে 'আপ (u) কোয়ার্ক ও ডাউন (d) কোয়ার্ক, দ্বিতীয় জেনারেশনে আছে চার্ম (c) কোয়ার্ক ও স্ট্রেঞ্জ(s) কোয়ার্ক এবং তৃতীয় জেনারেশনে আছে টপ(t) কোয়ার্ক ও বটম(b) কোয়ার্ক। বটম কোয়ার্ককে অনেকে বিউটি কোয়ার্ক বলেও ডেকে থাকেন। আর টপ কোয়ার্ককে অনেকে ট্রুথ কোয়ার্ক বলেও ডেকে থাকেন। এই ৬টি কোয়ার্কের আবার ৩টি ভিন্ন ভিন কালার চার্জ আছে। অর্থাৎ স্বাভাবিক কোয়ার্ক সংখ্যা হল ১৮ টি। প্রতিটি কোয়ার্কের প্রতি- কণিকা (anti- particle) বিদ্যমান বলে কোয়ার্ক ও প্রতি- কোয়ার্কের সংখ্যা সর্বমোট হল ৩৬।
নিউট্রনের অভ্যন্তরে চলা মিথষ্ক্রিয়া। গতিশীল বৃত্ত দ্বারা গ্লুওনকে বোঝানো হয়েছে। বৃত্তের কেন্দ্রে থাকে কালার চার্জ, আর বাইরের দিকে থাকে অ্যান্টি- কালার চার্জ। চিত্রঃ উইকিপিডিয়া। 


কালার চার্জ হল চার্জের মতোই কণিকাদের অন্য একটি বৈশিষ্ট্যমূলক ধর্ম। কালারচার্জ ও চার্জ ছাড়াও কণিকাদের ফ্লেভার, স্ট্র্যাঞ্জনেস ইত্যাদি বিভিন্ন বৈশিষ্ট্যমূলক ধর্ম আছে। কোয়ার্কের ধর্মই হল এমনভাবে মিশ্রিত হয়ে বস্তু গঠন করা যাতে মোট কালার চার্জ শূণ্য হয়। কোয়ার্কের চার্জ বিদ্যমান বলে কোয়ার্ক তড়িচ্চুম্বকীয় মিথষ্ক্রিয়া দেখায়।

লেপটনঃ 

লেপটনগুলোও কোয়ার্কের মতো ৩টি জেনারেশনে বিভক্ত। ইলেকট্রন (e) ও ইলেকট্রন নিউট্রিনো, মিউওন (μ) ও মিউওন নিউট্রিনো এবং টাউ(τ) ও টাউ নিউট্রিনো । ইলেকট্রন, মিউওন ও টাউ কণিকার প্রত্যেকের আধান, ভর এবং আকার আছে। অন্যদিকে নিউট্রিনোগুলোর কারোরই আধান নেই, কিন্তু অতি সূক্ষ্ম ভর রয়েছে। এক সময় মনে করা হত নিউট্রিনোগুলোর কারোরই ভর নেই, কিন্তু আর্থার বি ম্যাকডোনাল্ড ও তাকাকি কাজিতা নামের দুইজন বিজ্ঞানী নিউট্রিনোর স্পন্দনের মাধ্যমে দেখান যে নিউট্রিনোর অতি সূক্ষ্ম ভর আছে। এজন্য তারা ২০১৫ সালে পদার্থবিজ্ঞানে নোবেল পুরস্কারও লাভ করেন।

লেপটনগুলো কোয়ার্কের মতোই ফার্মিয়ন শ্রেণির অন্তর্ভূক্ত। তবে কোয়ার্কের কালার চার্জ থাকলেও কোনো লেপটনের কালার চার্জ নাই এবং মাত্র ৩টি লেপটনের বৈদ্যুতিক চার্জ রয়েছে। যেহেতু ইলেকট্রন, মিউওন ও টাউ কণিকার চার্জ আছে, তাই এরা তড়িচ্চুম্বকীয় মিথষ্ক্রিয়া দেখায়। কিন্তু, নিউট্রিনোর চার্জ নেই বলে এরা শুধুমাত্র দুর্বল নিউক্লীয় মিথষ্ক্রিয়া দেখায়। ইলেকট্রন, মিউওন ও টাউ কণিকার প্রতি- কণিকা থাকলেও বিজ্ঞানীরা নিউট্রিনোর প্রতি- কণিকা আছে কি না সে বিষয়ে সন্দিহান। ঠিক সন্দিহান বলা যাবে না, প্রতি- কণিকা যে আছে সেটা পল ডিরাক নিশ্চিত করে গেছেন। সমস্যা হল নিউট্রিনোর প্রতি-কণিকা নিউট্রিনো কি নিজেই? না অ্যান্টি- নিউট্রিনো বলে ভিন্নধর্মী কিছু একটা আছে? এখানেই বিজ্ঞানীদের সমস্যা। তাই কেউ কেউ বলেন মৌলিক কণিকার সংখ্যা ৫৮টি, আবার অনেকের মতে তা ৬১টি। যদি ৬১টি ধরা হয় তবে, লেপটনের সংখ্যা হয় ১২ টি। অর্থ্যাৎ, ৬ টি লেপটন, আর ৬টি প্রতি- লেপটন।

মোট ৩৬টি কোয়ার্ক এবং ১২টি লেপটন নিয়ে ফার্মিয়ন শ্রেণি গঠিত। ফার্মিয়ন শ্রেণির কণিকাগুলো সকল পদার্থের গঠনের জন্য দায়ী। পদার্থের গঠনগত একক পরমাণুর কেন্দ্রের প্রোটন, নিউট্রন কোয়ার্ক দ্বারাই গঠিত, যা ফার্মিয়ন শ্রেণিভুক্ত। পরমাণুর ইলেকট্রনও ফার্মিয়ন শ্রেণির কণিকা। পরমাণুতে অস্থায়ীভাবে উৎপন্ন বিভিন্ন কণিকাগুলোও কোয়ার্ক ও প্রতি-কোয়ার্কের সমন্বয়েই গঠিত।

আজ পদার্থের গঠনের মৌলিক এককগুলো আমরা দেখলাম, যা ব্যাখ্যা করা গেছে একমাত্র স্ট্যান্ডার্ড মডেলের কল্যাণেই। স্ট্যান্ডার্ড মডেল শুধু পদার্থ কী দিয়ে তৈরি সেটাই আমাদের চোখে আঙুল দিয়ে দেখিয়ে দেয়নি, সাথে সাথে কীভাবে তারা একত্রে আছে, মিথষ্ক্রিয়া গুলো কীভাবে ও কেন করে, এই প্রশ্নগুলির উত্তরও দিয়েছে। তাই স্ট্যান্ডার্ড মডেলকে থিওরি অব এভরিথিং না বললে কী হল! থিওরি অব অলমোস্ট এভরিথিং বলাই চলে!!

সূত্র:
১. http://wikiquote.org/wiki/Enrico_Fermi/
২. http://­Wikipedia.org/wiki/Standard_Model/
৪. http://­profmattstrassler.com­/articles-and-posts/largehadroncolliderfaq/
৫. http://home.cern/about/physics/standard-model
Category: articles

শনিবার, ২২ অক্টোবর, ২০১৬

লিখেছেনঃ রাকিব হাসান। শিক্ষার্থী, রংপুর মেডিকেল কলেজ। 

অামি ফোটন। এই মহাবিশ্বের সবচেয়ে ক্ষুদ্রতর কণিকাগুলোর একটি। অামরা বোসন শ্রেণির অন্তর্ভুক্ত। অাকারে ক্ষুদ্রতর হলেও গতিতে অামরাই সেরা। জন্মলগ্ন থেকেই অামরা ছুটে চলেছি এক অবিশ্বাস্য গতিতে, প্রতি সেকেন্ডে প্রায় তিন লক্ষ কিলোমিটার। অামাদের কোনো ভর নেই, তাই অামাদের জীবনকালও অনন্ত। অামরাই এই অন্ধকার মহাবিশ্বকে অালোকিত করেছি, পৃথিবীকে করেছি জীবন্ত।

মহাবিশ্বের এক প্রান্ত থেকে অন্য প্রান্তে অামরা প্রতিনিয়ত অনেক গুরুত্বপূর্ণ তথ্য বহন করে চলেছি। অামাদের যাত্রাকালের কোন নির্দিষ্ট সীমারেখা নেই। অামরা কোটি কোটি বছর মহাশূন্যে ভ্রমণ করতে পারি, পাড়ি দিতে পারি কোটি কোটি অালোকবর্ষ দূরত্ব। মহাবিশ্বের বিস্তৃত এলাকাজুড়ে অামাদের বিচরণ। অামাদের জন্মও হয়েছে বিভিন্ন সময়ে মহাবিশ্বের বিভিন্ন জায়গাতে বিভিন্ন ঘটনার পরিপ্রেক্ষিতে।

ফোটন কণার আকৃতি। সূত্রঃ ফিজিক্সসেন্ট্রাল

উদাহরণস্বরূপ, অামার জন্ম হয়েছিল সূর্যের কেন্দ্রে, এক জটিল ফিউশন বিক্রিয়ার ফলে। সূর্যের কেন্দ্রে প্রচন্ড তাপমাত্রা ও চাপে হাইড্রোজের পরমাণু থেকে ইলেকট্রন ছিটকে বেরিয়ে যায়, শুধু প্রোটন অবশিষ্ট থাকে। প্রোটনগুলোর সমধর্মী চার্জ থাকা সত্ত্বেও কেন্দ্রের প্রচন্ড চাপে দুটি প্রোটন পরস্পরের সন্নিকটে অাসে। এসময় একটি প্রোটন পরিবর্তিত হয়ে নিউট্রনে পরিণত হয় এবং প্রোটন-নিউট্রন মিলে ডিউটেরিয়াম পরমাণু গঠন করে। এই ডিউটেরিয়াম পরমাণুর সাথে অাবারও প্রোটনের ফিউশন বিক্রিয়ায় প্রথমে হিলিয়াম-৩ এবং পরবর্তীতে হিলিয়াম-৪ পরমাণু গঠিত হয়। এই বিক্রিয়াকে প্রোটন-প্রোটন চেইন বিক্রিয়া বলা হয়, যা অত্যন্ত ধীর গতির একটি বিক্রিয়া এবং ফোটনের অন্যতম প্রধান উৎস। অামার জন্মও হয়েছিল এই বিক্রিয়া থেকেই।

জন্মের পর সূর্যের কেন্দ্র থেকে বিকিরণ ও পরিচলন অঞ্চল এবং ফটোস্ফিয়ার (Photosphere) পেরিয়ে এর পৃষ্টভাগে পৌছতে অামার সময় লেগেছে প্রায় এক লক্ষ বছর। এই দীর্ঘ সময় সূর্যের মাঝেই অাটকে ছিলাম। সূর্যের কেন্দ্রে প্রতি সেকেন্ড শত কোটি বার বিভিন্ন পরমাণুর সাথে সংঘর্ষ হত। অামাদের প্রত্যেককেই এভাবে সূর্যের কেন্দ্র থেকে বাইরে বেরিয়ে আসার পথ খুঁজে নিতে হয়। দীর্ঘ প্রচেষ্টার পর অবশেষে অামি সফল হয়েছি।

অাজ অামি মুক্ত, স্বাধীন। বিশাল মহাবিশ্বে মুক্তভাবে ঘুরে বেড়ানোর স্বপ্ন নিয়ে যাত্রা শুরু করেছি। এই যাত্রার কোনো শেষ নেই। এভাবেই ছুটে বেড়াবো মহাবিশ্বের এক প্রান্ত থেকে অন্য প্রান্তে। শত শত কোটি বছর যাত্রা করে হয়ত একদিন পৌছে যাবো দূরের কোনো এক গ্রহে, যেখানে মানুষের মতোই কেউ একজন অপেক্ষায় থাকবে অামার কাছ থেকে সূর্যের গুরুত্বপূর্ণ তথ্য সংগ্রহের অাশায়। ততদিনে হয়ত সৌরজগতের চিত্র পুরোপুরি বদলে যাবে। বদলে যাবে মহাবিশ্বের বর্তমান রূপ। অার এই বদলে যাওয়া মহাবিশ্বের তথ্য নিয়েই অামার মত অগণিত ফোটন মহাবিশ্বে ছুটে বেড়াবে। মহাবিশ্বের বর্তমান রূপ অামাদের মাঝে অতীত হিসেবে বিদ্যমান থাকবে, কারণ অামরাই মহাবিশ্বের অাত্মজীবনী।
Category: articles

শনিবার, ১ অক্টোবর, ২০১৬

স্ট্যান্ডার্ড মডেল হল বিজ্ঞানের ইতিহাসে সবচেয়ে সফল তত্ত্বগুলোর মাঝে একটি। অনেকে স্ট্যান্ডার্ড মডেলকে মৌলিক কণাদের বা বলবাহক কণাদের তালিকা মনে করলেও এটি আসলে এটি নিছকই তালিকা নয়, বরং একটি গাণিতিক সূত্র বা তত্ত্ব। চলুন জেনে নিই, অতি-পারমাণবিক কণাদের আচরণ ও মৌলিক বলগুলোর একীভূত কোয়ান্টাম তত্ত্ব গঠনে সফল এই তত্ত্বের জন্ম কীভাবে হল।

বর্তমান বিজ্ঞানীদের নিকট অন্যতম বড় একটা চ্যালেঞ্জ হল প্রকৃতির মৌলিক ৪ টি বলকে একীভূত করা। বিজ্ঞানীরা মনে করেন, এই মৌলিক বলগুলোকে একীভূত করা গেলে কসমোলজি বা সৃষ্টিতত্ত্ব, কণা-পদার্থবিজ্ঞান, জ্যোতির্পদার্থবিজ্ঞান ইত্যাদির হাজারো সমস্যার সমাধান হয়ে যাবে। সেই আদিকাল থেকেই সকল বলকে একই বলের বিভিন্ন রূপ হিসেবে দেখানোর চেষ্টা করা হয়েছে। কিন্তু, তখনও সকল মৌলিক বল আবিষ্কৃত না হওয়ায় বিজ্ঞানীরা মৌলিক বলগুলোকে একীভূত করতে পারেননি। পরবর্তীতে যখন সবল ও দুর্বল নিউক্লীয় বল আবিস্কৃত হয় তখন মৌলিক বলগুলোর একীভবনের জন্য অনেকগুলো তত্ত্ব গঠিত হয়। সুপারস্ট্রিং তত্ত্ব, লুপ কোয়ান্টাম গ্র্যাভিটি, ইয়াং-মিলস ফিল্ড এই তত্ত্বগুলোর মাঝে অন্যতম।

কোনো একটি বলকে ব্যাখ্যা করতে গেলে দরকার হয় ফিল্ড থিওরি বা ক্ষেত্র তত্ত্বের। যেমন মহাকর্ষ বলের জন্য যেমন মহাকর্ষ ক্ষেত্র রয়েছে। আইনস্টাইনের সফলতা ও নিউটনের ব্যর্থতার মূল কারণ হল আইনস্টাইন একটি মহাকর্ষ ক্ষেত্র তত্ত্ব গঠন করতে পেরেছিলেন, যা নিউটন পারেননি। দুর্বল ও সবল নিউক্লীয় বলের জন্য কোনো ক্ষেত্র তত্ত্ব যখন আবিষ্কৃত হয়নি, তখন ১৯৫৪ সালে এন. সি. ইয়াং ও তার ছাত্র আর. এল. মিলস একটি নতুন ক্ষেত্র তত্ত্ব দেন। এটি দুর্বল ও সবল নিউক্লীয় বলকে কোয়ান্টা বিনিময়ের মাধ্যমে ব্যাখ্যা করতে সক্ষম হয়। ইয়াং-মিলস ক্ষেত্রতত্ত্বের আলোকে সবল ও দুর্বল নিউক্লিয় বল এবং তাড়িচ্চুম্বকীয় বলকে একীভূত করার যে প্রচেষ্টা শুরু হয়, তাই অবশেষে স্ট্যান্ডার্ড মডেল অব পার্টিকেল রূপে পরিচিতি পায়। স্ট্যান্ডার্ড মডেল ব্যাখ্যা করে যে পদার্থের মৌলিকতম কণাগুলো কীভাবে নিজেদের মাঝে মিথষ্ক্রিয়া বা পারস্পরিক প্রতিক্রিয়া করছে এবং বলবাহক কণাগুলোর সাথে মিথষ্ক্রিয়া করে মৌলিক ৩টি বলের ক্ষেত্র কীভাবে সৃষ্টি করছে।

এই মডেল অনুসারে প্রকৃতিতে প্রাপ্ত সকল বলের জন্যই এক বা একাধিক কোয়ান্টা রয়েছে। বল তৈরি হয় এই কোয়ান্টাদের পারস্পারিক আদান- প্রদানের মাধ্যমে। দৃশ্যমান সকল পদার্থের গঠনগত মৌলিক কণাদের আচরণ এই তত্ত্বের আলোকে ব্যাখ্যা করা যায়। আমি এখানে দৃশ্যমান বলেছি, কেননা ডার্ক ম্যাটার, ডার্ক এনার্জি এবং অ্যান্টিম্যাটারের সৃষ্টিকে এই তত্ত্ব দ্বারা ব্যাখ্যা করা যায় না। বেরিয়নসূচক পদ্ধতি, হায়ারার্কি সমস্যা, নিউট্রিনো স্পন্দন, সবল সিপি প্রতিসাম্য সমস্যাসহ আরো অনেক কিছুই আছে, যেখানে স্ট্যান্ডার্ড মডেল ব্যর্থ হয়ে পড়ে।


তত্ত্বের সীমাবদ্ধতার কথা পরে বলব, আগে তত্ত্বটির ভালো দিকগুলির কথায় জানা যাক! প্রকৃতিতে প্রাপ্ত মৌলিক বল ৪টি। বিজ্ঞানীরা নতুন আরেকটি মৌলিক বলের দাবি করলেও সেটা এখনও চূড়ান্তভাবে প্রমাণিত হয়নি। ৪টি মৌলিক বলের মাঝে ৩টি মৌলিক বলেরই কোয়ান্টাম তত্ত্ব গঠন করতে পারে এই স্ট্যান্ডার্ড মডেল। মহাকর্ষ বল বাদে অন্য সব বলগুলোকে একীভূত করার কৃতিত্বও তাই এই মডেলের।

কণিকার স্ট্যান্ডার্ড মডেল 


সবল নিউক্লীয় বলঃ

আমরা জানি সবল নিউক্লীয় বলের কারণেই নিউক্লিয়াসের স্থায়ীত্ব রয়েছে। নিউক্লিয়াসের মাঝে প্রোটন ও নিউট্রনের একত্রে থাকার মূল রহস্য সবল নিউক্লীয় আকর্ষণ বল। স্ট্যান্ডার্ড মডেল অনুসারে সবল নিউক্লীয় বলের জন্য দায়ী কণা হল গ্লুওন নামক একটি বলবাহক কণা। এই গ্লুওন মূলত গ্লুওন ক্ষেত্র নামক একটি ক্ষেত্র তৈরি করে, যে ক্ষেত্রে কোয়ার্ক নামক একপ্রকার কণা গ্লুওন কণাকে বিনিময়ের মাধ্যমে একত্রে থেকে প্রোটন ও নিউট্রনের সৃষ্টি করে। এই প্রোটন ও নিউট্রন আবার বিভিন্ন মেসন কণা দ্বারা আবদ্ধ থাকে। গ্লুওনের কাজ হল মেসনসহ সকল নিউক্লিওনকে বেঁধে রাখা। স্ট্যান্ডার্ড মডেলে মোট ১৮ রকমের কোয়ার্ক ও ৮ রকমের গ্লুওন কণা আছে, যাদের কালার নামক একটি বিশেষ বৈশিষ্ট্য আছে। স্ট্যান্ডার্ড মডেলের যে অংশে সবল নিউক্লীয় বলকে ব্যাখ্যা করা হয় তাকে কোয়ান্টাম ক্রোমোডাইন্যামিক্স বলে। এই "ক্রোমো" শব্দটি "Color" শব্দ থেকে এসেছে। এটি সংক্ষেপে QCD (Quantum ChromoDynamics) নামেও পরিচিত।


দুর্বল নিউক্লীয় বলঃ

স্ট্যান্ডার্ড মডেল অনুসারে লেপটন নামক বিশেষ এক শ্রেণির কণা রয়েছে। এই লেপটনদের স্পিন কোয়ান্টাম সংখ্যা সবসময় ভগ্নাংশ হয়, আর এরা পাউলির বর্জন নীতি মেনে চলে। দুর্বল নিউক্লীয় বল এই লেপটন কণাদের আচরণ থেকেই বের হয়ে আসে। তবে দুর্বল নিউক্লীয় বলের জন্য দায়ী কণা বা বলবাহক কণা হল W এবং Z কণা। ২ প্রকারের W কণা (W+ ও W-) ও ১ প্রকারের Z কণা রয়েছে। গ্লুওনের মত এরাও বোসন শ্রেণির কণা। স্ট্যান্ডার্ড মডেলের এই অংশকে বলা হয় কোয়ান্টাম ফ্লেভারোডাইন্যামিক্স, যা সংক্ষেপে QFD (Quantum FlavourDynamics) নামেও পরিচিত।


তড়িচ্চুম্বকীয় বলঃ 

ম্যাক্সওয়েল সাহেবের তড়িচ্চুম্বকীয় বলকেও এই স্ট্যান্ডার্ড মডেল অন্তর্ভুক্ত করেছে। এই বলের জন্য দায়ী কোয়ান্টা হল ফোটন নামক এক প্রকার কণা। এটিও বলবাহক কণা। এই তত্ত্ব সবচেয়ে বেশিবার পরীক্ষিত তত্ত্ব ও সবচেয়ে সফল তত্ত্ব। চিরায়ত বলবিদ্যার (classical mechanics) এই তত্ত্বকে কোয়ান্টায়িত করার কৃতিত্ত্ব স্ট্যান্ডার্ড মডেলরই। এই অংশকে বলা হয় কোয়ান্টাম ইলেকট্রোডাইন্যামিক্স বা QED (Quantum ElectroDynamics)

এভাবেই তিনটি বলকে একীভূত করেছে স্ট্যান্ডার্ড মডেল। এই মডেল যদিও মহাকর্ষ বলকে একীভূত করতে পারেনি, তবুও গ্র্যাভিটন নামক একটি কল্পিত কণা ধরে নিয়ে স্ট্যান্ডার্ড মডেলের মাধ্যমেই মহাকর্ষকে ব্যাখ্যা করার চেষ্টা চলছে। গ্র্যাভিটন কণাকে এই মডেলের আওতায় নিয়ে আসা যায়, যা এখনও পর্যবেক্ষণ করা সম্ভব হয়নি। অন্যান্য প্রায় সকল কণা পর্যবেক্ষণ করা সম্ভব হয়েছে। তবে গ্র্যাভিটনের মতো স্ট্যান্ডার্ড মডেল কর্তৃক কল্পিত কণার সংখ্যাও কম নয়। তারপরেও এই মডেলকে এতটা সফল বলা যায় কারণ,  ১৯৬০ থেকে '৭০ এর দশকে বিজ্ঞানীরা এই মডেল নিয়ে যে ভবিষ্যদ্বাণী করতেন তাই মিলে যেত। শক্তিশালী কোলাইডার বা এ্যাটম স্ম্যাশারগুলো এবং ক্লাউড চেম্বারে কণার গতিপথ থেকে এই মডেলের সত্যতা প্রমাণ করা যায়।

মূল কথা হল, এই মডেল প্রায় সকল প্রকার পদার্থেরই গঠন ও বলগত মিথষ্ক্রিয়া ব্যাখ্যা করতে সক্ষম। ম্যাক্সওয়েল ও ইয়াং মিলস ফিল্ডের সাহায্যে এই মডেল কাজ করে থাকে। তবে বিজ্ঞানী ক্লেইন ও কালুজা তাদের তত্ত্বে উচ্চ মাত্রা ব্যবহার করে ম্যাক্সওয়েলের তত্ত্ব ও মহাকর্ষকে একীভূত করার একটি উপায় দিয়েছিলেন। যেহেতু স্ট্যান্ডার্ড মডেল ম্যাক্সওয়েলের তত্ত্বকে ব্যাখ্যা করতে পারে, তাই আমরা আশা রাখতেই পারি যে স্ট্যান্ডার্ড মডেল অদূর ভবিষ্যতে মহাকর্ষ বলকেও ব্যাখ্যা করতে পারবে।

শুধু এটুকু পড়ে তৃপ্তি না পেলে ঢুঁ মেরে আসুনঃ
☛ স্ট্যান্ডার্ড মডেলের একটু গভীরে

সূত্র:
১. সার্ন
২। উইকিপিডিয়া 
Category: articles

জ্যোতির্বিজ্ঞান পরিভাষা: জেনে নিন কোন শব্দের কী মানে

এখানে সংক্ষিপ্ত ব্যাখ্যাসহ জ্যোতির্বিদ্যায় প্রয়োজনীয় পরিভাষাগুলোর তালিকা দেওয়া হলো। সাজানো হয়েছে অক্ষরের ক্রমানুসারে। এই তালিকা নিয়মিত আপডেট...